

Teledyne DALSA • 7075 Place Robert-Joncas, Suite 142 • St-Laurent, Quebec, H4M 2Z2 • Canada <u>www.teledynedalsa.com</u>

# **X64 Xcelera-LVDS PX4**<sup>TM</sup>

# User's Manual Edition 1.05

Part number OC-X4LM-PUSR0



#### NOTICE

#### © 2011 TELEDYNE DALSA Corp. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic or mechanical, without the express written permission of TELEDYNE DALSA Corp. Every effort is made to ensure the information in this manual is accurate and reliable. Use of the products described herein is understood to be at the user's risk. TELEDYNE DALSA Corp. assumes no liability whatsoever for the use of the products detailed in this document and reserves the right to make changes in specifications at any time and without notice.

Microsoft® is a registered trademark; Windows®, Windows® 2000, Windows® XP, Windows® Vista are trademarks of Microsoft Corporation.

All other trademarks or intellectual property mentioned herein belong to their respective owners.

Edition 1.05 November 11, 2011

Document Number: OC-X4LM-PUSR0

Printed in Canada

# Contents

| X64 XCELERA-LVDS PX4 OVERVIEW                       | 5  |
|-----------------------------------------------------|----|
| PRODUCT PART NUMBERS                                | 5  |
| ABOUT THE X64 XCELERA-LVDS PX4 FRAME GRABBER        | 7  |
| ACU-Plus: X64-LVDS Acquisition Control Unit         | 7  |
| DTE: Intelligent Data Transfer Engine               | 7  |
| User Programmable Configurations                    | 8  |
| Advanced Controls Overview                          | 9  |
| ABOUT THE OPTIONAL X-I/O MODULE                     | 9  |
| DEVELOPMENT SOFTWARE OVERVIEW                       | 10 |
| Sapera++ LT Library                                 | 10 |
| Sapera Processing Library                           | 10 |
| INSTALLING X64 XCELERA-LVDS PX4                     | 11 |
| WARNING! (GROUNDING INSTRUCTIONS)                   |    |
| SAPERA LT LIBRARY INSTALLATION                      | 11 |
| INSTALLING X64 XCELERA-LVDS PX4 HARDWARE AND DRIVER |    |
| In a Windows XP/Vista/7 System                      | 12 |
| X64 Xcelera-LVDS PX4 Firmware Loader                | 13 |
| UPGRADING SAPERA OR ANY BOARD DRIVER                | 14 |
| Board Driver Upgrade Only                           | 15 |
| Sapera and Board Driver Upgrades                    | 15 |
| ENABLING THE SERIAL CONTROL PORT                    | 16 |
| COM Port Assignment                                 | 16 |
| Setup Example with Windows HyperTerminal            | 17 |
| DISPLAYING X64 XCELERA-LVDS PX4 BOARD INFORMATION   | 19 |
| Device Manager – Board Viewer                       | 19 |
| LVDS CAMERA CONNECTIONS & STATUS LEDS               | 20 |
| Camera Connection Examples                          | 21 |
| One Camera – One 8-bit Channel or Tap               | 21 |
| One Camera – Two 8-bit Channels or Taps             |    |
| One Camera – Four 8-bit Channels or Taps            |    |
| One Camera – Eight 8-bit Channels or Taps           | 24 |
| One Camera – 24-bit RGB                             |    |
| One Camera – One 10-bit Channel                     |    |
| One Camera – Two 10-bit Channels                    |    |
| One Camera – Four 10-bit Channels                   |    |

| One Camera – 30-bit RGB                                               |    |
|-----------------------------------------------------------------------|----|
| One Camera – One 12-bit Channel                                       |    |
| One Camera – Two 12-bit Channels                                      |    |
| One Camera – Four 12-bit Channels.                                    |    |
| Configuring Sapera                                                    | 33 |
| Viewing Installed Sanera Servers                                      | 33 |
| Increasing Contiguous Memory for Sanera Resources                     | 33 |
| Contiguous Memory for Sapera Messaging                                |    |
|                                                                       |    |
| TROUBLESHOOTING INSTALLATION PROBLEMS                                 | 35 |
| OVERVIEW                                                              |    |
| PROBLEM TYPE SUMMARY                                                  |    |
| First Step: Check the Status LED                                      | 35 |
| Possible Installation Problems                                        |    |
| Possible Functional Problems                                          | 36 |
| TROUBLESHOOTING PROCEDURES                                            |    |
| Checking for PCI Bus Conflicts                                        |    |
| Windows Device Manager                                                |    |
| GEN2 PCI Slot Computer Issue                                          |    |
| Sapera and Hardware Windows Drivers                                   |    |
| Recovering from a Firmware Update Error                               |    |
| Driver Information via the Device Manager Program                     |    |
| DALSA Log Viewer                                                      |    |
| Memory Requirements with Area Scan Acquisitions                       |    |
| Symptoms: CamExpert Detects no Boards                                 |    |
| Symptoms: X64 Xcelera-LVDS PX4 Does Not Grah                          | 42 |
| Symptoms: Card grahs black                                            | 43 |
| Symptoms: Card acquisition bandwidth is less than expected            |    |
|                                                                       |    |
|                                                                       | 45 |
| INTERFACING CAMERAS WITH CAMEXPERT.                                   |    |
| CamExpert Example with a Monochrome Camera                            |    |
| CamExpert Demonstration and Test Tools                                | 47 |
| Camera Files Distributed with Sapera                                  | 48 |
| Overview of Sapera Acquisition Parameter Files (*.ccf or *.cca/*.cvi) |    |
| Camera Interfacing Check List                                         | 50 |
| USING THE FLAT FIELD CORRECTION TOOL                                  | 50 |
| X64 Xcelera-LVDS PX4 Flat Field Support                               |    |
| Set up Dark and Bright Acquisitions with the Histogram Tool           | 51 |
| Flat Field Correction Calibration Procedure                           | 53 |
| Using Flat Field Correction                                           | 54 |
| SAPERA DEMO APPLICATIONS                                              | 55 |
|                                                                       | 33 |
| Using the Grah Demo                                                   |    |
| FI AT-FIELD DEMO OVERW                                                |    |
|                                                                       | J/ |

| Using the Flat Field Demo                                                                                                                                                                       |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| X64 XCELEDA I VDS PX4 REFERENCE                                                                                                                                                                 | 50 |
| FULL BLOCK DIAGRAM                                                                                                                                                                              | 59 |
| A COLUSITION TIMING                                                                                                                                                                             | 60 |
| I INE TRIGGER SOURCE SELECTION FOR I INE SCAN ADDITIONS                                                                                                                                         | 61 |
| COR ACO PRM FYT LINE TRIGGER SOURCE – Parameter Values                                                                                                                                          |    |
| Specific to the X64-CL series                                                                                                                                                                   | 61 |
| Shaft Encoder Interface Timing                                                                                                                                                                  | 63 |
| VIRTUAL FRAME RESET FOR LINE SCAN CAMERAS                                                                                                                                                       |    |
| A COLUSITION METHODS                                                                                                                                                                            |    |
| SUPPORTED EVENTS                                                                                                                                                                                | 66 |
| LUT Avail ability                                                                                                                                                                               | 68 |
| X64 XCELERA-LVDS PX4 SUPPORTED PARAMETERS                                                                                                                                                       |    |
| Camera Related Canabilities                                                                                                                                                                     |    |
| Camera Related Parameters                                                                                                                                                                       |    |
| VIC Related Parameters.                                                                                                                                                                         |    |
| ACO Related Parameters                                                                                                                                                                          |    |
| MEMORY ERROR WITH AREA SCAN FRAME BUFFER ALLOCATION                                                                                                                                             |    |
|                                                                                                                                                                                                 |    |
| SAPERA SERVERS & RESOURCES                                                                                                                                                                      | 79 |
| Servers and Resources                                                                                                                                                                           |    |
| TRANSFER RESOURCE LOCATIONS                                                                                                                                                                     | 79 |
|                                                                                                                                                                                                 |    |
| TECHNICAL SPECIFICATIONS                                                                                                                                                                        | 81 |
| X64 XCELERA-LVDS PX4 BOARD SPECIFICATIONS                                                                                                                                                       |    |
| HOST SYSTEM REQUIREMENTS                                                                                                                                                                        |    |
| EMI CERTIFICATIONS                                                                                                                                                                              |    |
| CONNECTOR AND SWITCH LOCATIONS                                                                                                                                                                  |    |
| X64 Xcelera-LVDS PX4 Board Layout Drawing                                                                                                                                                       |    |
| Connector, Switch, Jumper Description List                                                                                                                                                      |    |
| CONNECTOR AND SWITCH SPECIFICATIONS                                                                                                                                                             | 85 |
| Configuration Micro-switches                                                                                                                                                                    |    |
| X64 Xcelera-LVDS PX4 End Bracket View                                                                                                                                                           |    |
| J12: Dual 68 Pin VHDCI Connectors                                                                                                                                                               |    |
| J12 – Connector 1: Monochrome Tap 1 & 2 Pinout                                                                                                                                                  |    |
| J12 – Connector 2: Monochrome Tap 3 & 4 Pinout                                                                                                                                                  |    |
| J12 – Connector 1: RGB-24 & RGB-30 Pinout                                                                                                                                                       |    |
| J12 – Connector 2: RGB-24 & RGB-30 Pinout                                                                                                                                                       |    |
| J2: Dual 68 Pin VHDCI Connectors                                                                                                                                                                |    |
| J2 – Connector 3: Monochrome Tap 5 & 6 Pinout                                                                                                                                                   | 06 |
|                                                                                                                                                                                                 |    |
| J2 – Connector 4: Monochrome Tap 7 & 8 Pinout                                                                                                                                                   |    |
| J2 – Connector 4: Monochrome Tap 7 & 8 Pinout<br>J3: External Signals Connector                                                                                                                 |    |
| J2 – Connector 4: Monochrome Tap 7 & 8 Pinout<br>J3: External Signals Connector<br>External Signals Connector Bracket Assembly (Type 1)                                                         |    |
| J2 – Connector 4: Monochrome Tap 7 & 8 Pinout<br>J3: External Signals Connector<br>External Signals Connector Bracket Assembly (Type 1)<br>External Signals Connector Bracket Assembly (Type 2) |    |

| APPENDIX: X-I/O MODULE OPTION                 | 113 |
|-----------------------------------------------|-----|
| X-I/O MODULE OVERVIEW                         |     |
| X-I/O Module Connector List & Locations       |     |
| X-I/O MODULE INSTALLATION                     |     |
| Board Installation                            |     |
| X64 Xcelera-LVDS PX4 and X-I/O Driver Update  |     |
| X-I/O MODULE EXTERNAL CONNECTIONS TO THE DB37 |     |
| DB37 Pinout Description                       |     |
| Outputs in NPN Mode: Electrical Details       |     |
| Outputs in PNP Mode: Electrical Details       |     |
| Opto-coupled Input: Electrical Details        |     |
| TTL Input Electrical Details                  |     |
| X-I/O MODULE SAPERA INTERFACE                 |     |
| Configuring User Defined Power-up I/O States  |     |
| Using Sapera LT General I/O Demo              |     |
| Sapera LT General I/O Demo Code Samples       |     |
| CONTACT INFORMATION                           | 127 |
| SALES INFORMATION                             |     |
| TECHNICAL SUPPORT                             |     |
| GLOSSARY OF TERMS                             | 129 |
| INDEX                                         | 133 |

# X64 Xcelera-LVDS PX4 Overview

# **Product Part Numbers**

#### X64 Xcelera-LVDS PX4 Board

| Item                                                                                                                              | Product Number |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|
| X64 Xcelera-LVDS PX4 with 128 MB of memory                                                                                        | OR-X4L0-XPX00  |
| X-I/O Module (optional): provides an additional 8 input & 8 output general I/Os (see "Appendix: X-I/O Module Option" on page 113) | OC-IO01-STD00  |
| For OEM clients, this manual in printed form, is available on request                                                             | OC-X4LM-USER0  |

#### X64 Xcelera-LVDS PX4 Software

| Item                                                                                                                      | Product Number            |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Sapera LT version 6.10 or later (required but sold separately)                                                            | OC-SL00-0000000           |
| 1. Sapera LT: Provides everything you will need to build your imaging application                                         |                           |
| 2. Current Sapera compliant board hardware drivers                                                                        |                           |
| 3. Board and Sapera documentation (compiled HTML help, and Adobe Acrobat® (PDF) formats)                                  |                           |
| <i>(optional)</i><br>Sapera Processing Imaging Development Library includes over 600 optimized image processing routines. | Contact Sales at<br>DALSA |

### X64 Xcelera-LVDS PX4 Cables & Accessories

| Item                                                                                                                                                                                                                                                                                                                                   | Product Number |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <i>(optional)</i> X64 Xcelera-LVDS PX4 shipped with an External Signals Connector<br>Bracket Assembly, either with a <b>DB37 or DB25</b> connector (see the two product<br>numbers below). Specify either cable if required, at the time of order.<br>Note: clients requiring more I/O connections must add the optional X-I/O Module. |                |
| <b>DB37 assembly</b><br>see "External Signals Connector Bracket Assembly (Type 1)" on page 107.<br>This cable assembly connects to J3.                                                                                                                                                                                                 | OR-X4CC-IOCAB  |
| <b>DB25 assembly</b><br>see "External Signals Connector Bracket Assembly (Type 2)" on page 109.<br>Provides direct compatibility with external cables made for products such as the<br>X64-CL iPro. This cable assembly connects to J3.                                                                                                | OR-X4CC-0TIO2  |
|                                                                                                                                                                                                                                                                                                                                        |                |
| DB25 male to color coded blunt end cable – 6 foot (1.82 meter) length                                                                                                                                                                                                                                                                  | OC-COMC-XEND1  |
| (optional) Power interface cable required when supplying power to cameras                                                                                                                                                                                                                                                              | OR-COMC-POW03  |

# About the X64 Xcelera-LVDS PX4 Frame Grabber

#### **Key Features**

- Legacy support for LVDS area and Line Scan, monochrome and RGB digital cameras (EIA-644)
- Single slot solution for cameras with up to 8 taps
- Pixel clock: 1 Hz to 85 MHz
- Half-length PCIe x4card, compliant with PCIe Rev. 1.1
- Flat Field/Flat Line Correction
- Output lookup tables available for each mode
- Vertical Flip supported on board
- Compliant with DALSA Trigger-to-Image Reliability framework
- RoHS compliant

See "Technical Specifications" on page 81 for detailed information.

# ACU-Plus: X64-LVDS Acquisition Control Unit

- Provides a flexible front-end for interfacing LVDS/RS422 cameras.
- ACU incorporates a fault-tolerant image synchronization design, allowing automatic detection, reporting and recovery from lost camera signals ensuring image sequence reliability.
- Embedded timing logic within the ACU-Plus identifies each acquired image with a time code.

# DTE: Intelligent Data Transfer Engine

The X64 Xcelera-LVDS PX4 intelligent Data Transfer Engine ensures fast image data transfers between the board and the host computer with zero CPU usage. The DTE provides a high degree of data integrity during continuous image acquisition in a non-real time operating system like Windows. DTE consists of multiple independent DMA units, Tap Descriptor Tables, and Auto-loading Scatter-Gather tables.

#### PCI Express x4 Interface

The X64 Xcelera-LVDS PX4 is a universal PCI Express x4 board, compliant with the PCI Express 1.0a specification. The X64 Xcelera-LVDS PX4 board achieves transfer rates up to 680 Mbytes/sec. with all taps used when connected to a corresponding camera or sensor.

The X64 Xcelera-LVDS PX4 board occupies one PCI Express x4 expansion slot and one chassis opening (two slots with the optional X-I/O Module Option).

#### Important:

- Older computers may not support the maximum data transfer bandwidth defined for PCI Express x4.
- The X64 Xcelera-LVDS PX4 board can also be used in a PCI Express x8 slot typically without issue.
- Refer to the computer documentation if there is only a PCI Express x16 slot. Such slots may not support PCI Express x4 products. Many computer motherboards only support x16 products in x16 slots (x16 slots are used with graphic video boards).

# **User Programmable Configurations**

Use the X64 Xcelera-LVDS PX4 firmware loader function in the DALSA Device manager utility to select firmware for one of the supported modes. Firmware selection is made either during driver installation or manually later on (see "Firmware Update: Manual Mode" on page 13).

### For the X64 Xcelera-LVDS PX4 board the firmware choices are:

- One LVDS Camera Input, Data Sampling on the Rising Edge of the Pixel Clock (*installation default selection*): Support for 1 LVDS camera with 1-8 taps. Data sampling with this firmware is compatible with the X64-LVDS board.
- One LVDS Camera Input, Data Sampling on the Falling Edge of the Pixel Clock: Support for 1 LVDS camera with 1-8 taps. Data sampling with this firmware is compatible with driver version 1.00 of the board.

# **Advanced Controls Overview**

#### **Visual Indicators**

X64 Xcelera-LVDS PX4 features a LED indicator to facilitate system installation and setup. This provides visual feedback indicating when the camera is properly connected and sending data. See "LVDS Camera Connections &" on page 20 for led color definitions.

#### **External Event Synchronization**

Trigger inputs and strobe signals provide precisely synchronize image captures with external events.

#### **Quadrature Shaft Encoder**

An important feature for web scanning applications, the Quadrature-Shaft-Encoder inputs allow synchronized line captures from external web encoders.

# About the Optional X-I/O Module

The optional X-I/O module adds independent general-purpose software controllable I/O signals to the X64 Xcelera-LVDS PX4. The X-I/O module provides two opto-coupled inputs, 6 logic signal inputs (5V or 24V), and 8 TTL outputs (NPN or PNP type selectable). The module also makes available 5V or 12V dc power from the host system.

Purchase the X-I/O module preinstalled on the X64 Xcelera-LVDS PX4 board or later for installation into the computer system. The module occupies one adjacent PCI slot and connects to the X64 Xcelera-LVDS PX4 via a ribbon cable. X-I/O Module external connections use the DB37 connector on the module bracket.

X-I/O requires X64 Xcelera-LVDS PX4 board driver version 1.00 or later and Sapera LT version 6.0 or later.

See "Appendix: X-I/O Module Option" on page 113 for details and specifications.

# **Development Software Overview**

# Sapera++ LT Library

Sapera++ LT is a powerful development library for image acquisition and control. Sapera++ LT provides a single API across all current and future DALSA hardware. Sapera++ LT delivers a comprehensive feature set including program portability, versatile camera controls, flexible display functionality and management, plus easy to use application development wizards.

Sapera++ LT comes bundled with CamExpert, an easy to use camera configuration utility to create new, or modify existing camera configuration files.

# Sapera Processing Library

Sapera Processing is a comprehensive set of C++ classes for image processing and analysis. Sapera Processing offers highly optimized tools for image processing, blob analysis, search (pattern recognition), OCR and barcode decoding.

# Installing X64 Xcelera-LVDS PX4

# Warning! (Grounding Instructions)

Static electricity can damage electronic components. Please discharge any static electrical charge by touching a grounded surface, such as the metal computer chassis, before performing any hardware installation.

If you do not feel comfortable performing the installation, please consult a qualified computer technician.

**Important:** Never remove or install any hardware component with the computer power on. Disconnect the power cord from the computer to disable the power standby mode. This prevents the case where some computers unexpectedly power up when a board is installed.

# Sapera LT Library Installation

Note: to install Sapera LT and the X64 Xcelera-LVDS PX4 device driver, logon to the workstation as administrator or with an account that has administrator privileges.

The Sapera LT Development Library (or 'runtime library' if application execution without development is preferred) must be installed before the board device driver.

- Insert the DALSA Sapera CD-ROM. With **AUTORUN** enabled on your computer, the installation menu runs automatically.
- If AUTORUN is disabled, use Windows Explorer and browse to the root directory of the CD-ROM. Execute **launch.exe** to start the installation menu and install the required Sapera components.
- The installation program will prompt you to reboot the computer.

Refer to Sapera LT User's Manual for additional details about Sapera LT.

# Installing X64 Xcelera-LVDS PX4 Hardware and Driver

# In a Windows XP/Vista/7 System

- Turn the computer off, disconnect the power cord (disables power standby mode), and open the computer chassis to allow access to the expansion slot area.
- Install the X64 Xcelera-LVDS PX4 into a free PCI Express x4 expansion slot. The X64 Xcelera-LVDS PX4 could also be installed in a PCI Express x8.
- Close the computer chassis and turn the computer on. Driver installation requires administrator rights for the current user of the computer.
- Windows will find the X64 Xcelera-LVDS PX4 and start its Found New Hardware Wizard. Click on the Cancel button to close the Wizard.
- Insert the DALSA Sapera CD-ROM. With AUTORUN enabled on your computer, the installation menu opens. Install the X64 Xcelera-LVDS PX4 driver.
- Without **AUTORUN** enabled, use Windows Explorer and browse to the root directory of the CD-ROM. Execute **launch.exe** to start the installation menu and install the X64 Xcelera-LVDS PX4 driver. During the late stages of the installation, the X64 Xcelera-LVDS PX4 firmware loader application starts. See the following section for a detailed description.
- If Windows displays any unexpected message concerning the installed board, power off the system and verify that the X64 Xcelera-LVDS LX4 is properly installed in the slot.
- When using Windows XP, if a message stating that the X64 Xcelera-LVDS PX4 software has not passed Windows Logo Testing displays, click on Continue Anyway to finish the driver installation. Reboot the computer if prompted to do so.
- When using Windows Vista/7, a message asking to install the DALSA device software displays. Click Install.

# X64 Xcelera-LVDS PX4 Firmware Loader

After Windows boots, the Device Manager-Firmware Loader program automatically executes at the end of the driver installation and on every subsequent reboot of the computer. It will determine if the X64 Xcelera-LVDS PX4 requires a firmware update. If firmware is required, a dialog displays, which also allows the user to load firmware for alternate operational modes of the X64 Xcelera-LVDS PX4.

*Important*: In the rare case of firmware loader errors please see "Recovering from a Firmware Update Error" on page 39.

#### Firmware Update: Automatic Mode

Click **Update All** to update the X64 Xcelera-LVDS PX4 firmware. The **X64 Xcelera-LVDS PX4** currently supports one standard firmware configuration for one LVDS camera.

If multiple X64 Xcelera-LVDS PX4 boards are in the system, new firmware will update each board. If any installed X64 Xcelera-LVDS PX4 board installed in a system already has the correct firmware version, an update is not required. In the following screen shot, a single installed X64 Xcelera-LVDS PX4 board requires new firmware.

| 3 |
|---|
| _ |
|   |
| - |
|   |
|   |
|   |
| - |
|   |
|   |

#### Firmware Update: Manual Mode

Select **Edit Configurations** mode to load firmware other then the default version or when, in the case of multiple X64 Xcelera-LVDS PX4 boards in the same system, each requires different firmware.

The figure below shows the Device Manager manual firmware screen, which displays information on all installed X64 Xcelera-LVDS PX4 boards, their serial numbers, and their firmware components.

#### Perform a manual firmware update as follows:

- Select the X64 Xcelera-LVDS PX4 to update via the board selection box (if there are multiple boards in the system)
- From the Configuration field drop menu select the firmware version required
- Click on the Start Update button
- Observe the firmware update progress in the message output window
- Close the Device manager program when the device reset is complete.

| 📉 DALSA Device Man                                                                                                                                       | ager v:3.18                                                                                                                                                                                          |                                                                                                          |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---|
| File Help                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                          |   |
| Firmware Update Manage                                                                                                                                   | er                                                                                                                                                                                                   |                                                                                                          |   |
| Start Update Save                                                                                                                                        | Config file Load Config File                                                                                                                                                                         | 🗹 Same Configuration For All Devices                                                                     |   |
| Device                                                                                                                                                   | Field                                                                                                                                                                                                | Value                                                                                                    |   |
| Xcelera-LVDS_PX4_1                                                                                                                                       | Serial Number                                                                                                                                                                                        | S4401043                                                                                                 |   |
| Update Firmware 🗹                                                                                                                                        | Device Version                                                                                                                                                                                       | A1                                                                                                       |   |
|                                                                                                                                                          | ACU/DTE + PCIe x4 Interface                                                                                                                                                                          | 1.10.01.0214                                                                                             |   |
|                                                                                                                                                          | Configuration                                                                                                                                                                                        | Standard                                                                                                 | - |
|                                                                                                                                                          | Information                                                                                                                                                                                          | Support for one lvds camera with 1 to 8 taps                                                             |   |
|                                                                                                                                                          | Firmware State                                                                                                                                                                                       | Update Not Required                                                                                      |   |
| - During lefs - Empire                                                                                                                                   | er lindete                                                                                                                                                                                           |                                                                                                          |   |
| Device into Firmwa                                                                                                                                       | re Update                                                                                                                                                                                            |                                                                                                          |   |
| Output                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                          |   |
| [16:42:36] Xcelera-LVI<br>[16:42:38] Xcelera-LVI<br>[16:42:38] Xcelera-LVI<br>[16:42:41] Xcelera-LVI<br>[16:42:41] Xcelera-LVI<br>[16:42:45] Xcelera-LVI | DS_FX4_1) Update of ACU/DTE<br>DS_FX4_1) Successfully update<br>DS_FX4_1) Reset in progress<br>DS_FX4_1) Device reset complet<br>DS_FX4_1) Verifying Firmware Sta<br>DS_FX4_1) Device's firmware has | + PCle x4 Interface in progress<br>ACU/DTE + PCle x4 Interface.<br>e.<br>e.<br>been updated successfully | * |
|                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                          |   |

#### Executing the Firmware Loader from the Start Menu

If required, run the Firmware Loader program via the Windows Start Menu shortcut **Start • Programs • DALSA • X64 Xcelera-LVDS PX4 Driver • Firmware Update**. A firmware change after installation would be required to select a different configuration mode if available. See "User Programmable Configurations" on page 8.

# Upgrading Sapera or any Board Driver

When installing a new version of Sapera or a DALSA acquisition board driver in a computer with a previous installation, the current version **must** be un-installed first. Upgrade the board driver and if required upgrade Sapera, as described below.

# **Board Driver Upgrade Only**

Download upgrades to acquisition board drivers from the DALSA web site www.dalsa.com/mv/support.

Board driver revisions are also available on the next release of the Sapera CD-ROM.

Often minor board driver upgrades do not require a new revision of Sapera. To confirm that the current Sapera version will work with the new board driver:

- Check the new board driver ReadMe.txt file before installing, for information on the minimum Sapera version required.
- If the ReadMe.txt file does not specify the Sapera version, contact DALSA Technical Support (see "Contact Information" on page 127).

#### To upgrade the board driver only:

- Logon the computer as an administrator or with an account that has administrator privileges.
- In Windows XP, from the start menu select Start Settings Control Panel Add or Remove **Programs**. Select the DALSA Xcelera board driver and click **Remove**. When the driver uninstall is complete, reboot the computer and logon the computer as an administrator again.
- In Windows Vista/7, from the start menu select Start Settings Control Panel Programs and Features. Double-click the DALSA Xcelera board driver and click Remove.
- Install the new board driver. Run Setup.exe if installing manually from a downloaded driver file.
- If the new driver is on a Sapera CD-ROM follow the installation procedure described in "Installing X64 Xcelera-LVDS PX4 Hardware and Driver" on page 12.
- Note that you cannot install a DALSA board driver without Sapera LT installed on the computer.

# Sapera and Board Driver Upgrades

To upgrade both Sapera and the acquisition board driver, follow the procedure described below.

- Logon the computer as an administrator or with an account that has administrator privileges.
- In Windows XP, from the start menu select Start Settings Control Panel Add or Remove Programs. Select the DALSA Xcelera board driver and click Remove. Follow by also removing the older version of Sapera LT.
- In Windows Vista/7, from the start menu select Start Settings Control Panel Programs and Features. Double-click the DALSA Xcelera board driver and click Remove. Follow by also removing the older version of Sapera LT.
- Reboot the computer and logon the computer as an administrator again.
- Install the new versions of Sapera and the board driver as if this was a first time installation. See "Sapera LT Library Installation" on page 11 and "Installing X64 Xcelera-LVDS PX4 Hardware and Driver" on page 12 for installation procedures.

# **Enabling the Serial Control Port**

The X64 Xcelera-LVDS PX4 includes a serial communication port for direct camera control by the frame grabber. The port is available on the VHDCI J12-Connector 1, where pin-32 is serial out and pin-34 is serial in (see "J12: Dual 68 Pin VHDCI Connectors" on page 88 ). The X64-LVDS driver supports this serial communication port either directly or by mapping it to a host computer COM port. Any serial port communication program, such as Windows HyperTerminal, can connect to the camera in use and modify its function modes via its serial port controls at speeds up to 115 kbps.

**Note:** if the serial communication program can directly select the X64 Xcelera-LVDS PX4 serial port then mapping to a system COM port is not necessary.

Map the X64 Xcelera-LVDS PX4 serial port to an available COM port by using the Sapera Configuration tool. Run the program from the Windows start menu: **Start • Programs • DALSA • Sapera LT • Sapera Configuration**.

## **COM Port Assignment**

The lower section of the Sapera Configuration program screen contains the serial port configuration menu. Configure as follows:

- Use the **Physical Port** drop menu to select the Sapera board device from all available Sapera boards with serial ports (when more then one board is in the system).
- Use the Maps to drop menu to assign an available COM number to that Sapera board serial port.
- Click on the **Save Settings Now** button then the **Close** button. Reboot the computer to enable the serial port mapping.
- The X64 Xcelera-LVDS PX4 serial port, now mapped to COM3 in this example, is available as a serial port to any serial port application for camera control. Note that this serial port does not show in the **Windows Control Panel System Properties Device Manager**.
- An example setup using Windows HyperTerminal follows.

|       | Server List                                                                                                                             |                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|       | Index Name<br>0 System<br>1 Xcelera-LVDS_PX4_1                                                                                          | Serial Number<br>(None)<br>S4401043            |
|       | Contiguous Memory<br>Used for allocating buffers<br>Requested<br>5 - MBytes<br>Allocated<br>3 - MBytes                                  | Jsed for allocating messages<br>Requested<br>6 |
|       | Serial Ports<br>Physical Port<br>Serial_0 on Xcelera-LVDS_PX4_1<br>Selected physical port is present<br>Careera Link ABL port index = 0 | Maps to                                        |
| IALSA | Enable DirectShow support                                                                                                               | ave Settings Now                               |

# Setup Example with Windows HyperTerminal

The following instructions apply to **Windows XP** only. Windows Vista and Windows 7 no longer include HyperTerminal, but a number of alternatives are available for download by searching the internet.

- Run HyperTerminal and type a name for the new connection when prompted. Then click OK.
- On the following dialog, select the COM port to connect. The port could be the COM port mapped to the X64 Xcelera-LVDS PX4 or the COM device as shown in this example.

| Connection Description                              | Connect To                                                |
|-----------------------------------------------------|-----------------------------------------------------------|
| New Connection                                      | 쵫 xcelera serial                                          |
| Enter a name and choose an icon for the connection: | Enter details for the phone number that you want to dial: |
| Name:<br>xcelera serial                             | Country/region: United States (1)                         |
| Loon:                                               | Area code: 666                                            |
| 🍳 🤤 🥸 🖳 🖉                                           | Phone number:                                             |
|                                                     | Connect using: Xcelera-LVDS_PX4_1_Serial_0                |
| OK Cancel                                           | OK Cancel                                                 |

• HyperTerminal now presents a dialog to configure the COM port properties. Change settings as required by the camera you are connecting too. Note that the X64 Xcelera-LVDS PX4 serial port does not support hardware flow control.

| celera-LVDS_PX4_1        | _Serial_0 P | roperties           | ? >   |
|--------------------------|-------------|---------------------|-------|
| Port Settings            |             |                     |       |
|                          |             |                     |       |
| <u>B</u> its per second: | 2400        | •                   | ~     |
|                          |             |                     | _     |
| <u>D</u> ata bits:       | 8           |                     | ~     |
| Parity:                  | None        | •                   | ~     |
|                          |             |                     |       |
| Stop bits:               | 1           |                     | ~     |
| <u>F</u> low control:    | None        | •                   | -     |
|                          |             |                     |       |
|                          | [           | <u>R</u> estore Def | aults |
|                          |             |                     |       |
| 0                        | K Ca        | ancel               | Apply |

# Displaying X64 Xcelera-LVDS PX4 Board Information

The Device Manager program also displays information about the X64 Xcelera-LVDS PX4 boards installed in the system. To view board information run the program via the Windows Start Menu shortcut **Start • Programs • DALSA • X64 Xcelera-LVDS PX4 Device Driver • Device Manager**.

## Device Manager - Board Viewer

The following screen image shows the Device Manager program with the Information/Firmware tab active. The left window displays all X64 **Xcelera-LVDS** PX4 boards in the system and their individual device components. The right window displays the information stored in the selected board device. The following screen shows the X64 **Xcelera-LVDS** PX4 information pane.

Generate the X64 **Xcelera-LVDS** PX4 device manager report file (BoardInfo.txt) by clicking **File • Save Device Info**. DALSA Technical Support may request this to aid in troubleshooting installation or operational problems.

| 🔨 DALSA Device Manager v:3.18                                                           |                    |                         |   |
|-----------------------------------------------------------------------------------------|--------------------|-------------------------|---|
| File Help                                                                               |                    |                         |   |
| Device Info Manager                                                                     |                    |                         |   |
| Program Refresh F                                                                       | eset               |                         |   |
| Device                                                                                  | Information        |                         |   |
| Ccelera-LVDS_FX4_1  Information Firmware G    Firmware G    ACU/DTE + PCIe x4 Interface | Field              | Value                   |   |
|                                                                                         | Issue              | A                       |   |
|                                                                                         | Interface Revision | 1                       |   |
|                                                                                         | Vendor ID          | 0x11EC                  |   |
|                                                                                         | Last ECO           | 4252                    |   |
|                                                                                         | CMI                | 0x0000                  |   |
|                                                                                         | Extension          | 0                       |   |
|                                                                                         | Serial Number      | S4401043                |   |
|                                                                                         | Component Ver      | sion 0                  |   |
|                                                                                         | Optional ECO       | 0x0                     |   |
|                                                                                         | Sub-Template V     | ersion 4                |   |
|                                                                                         | Board Model        | Xcelera-LVDS_PX4 Single |   |
| Design lefe Designed the data                                                           | E. aluation Date   | a lo                    |   |
| Device into Filmware opuale                                                             |                    |                         |   |
| Dutput                                                                                  |                    |                         |   |
|                                                                                         |                    |                         |   |
|                                                                                         |                    |                         |   |
|                                                                                         |                    |                         |   |
|                                                                                         |                    |                         |   |
| 1                                                                                       |                    |                         | * |

# **LVDS Camera Connections & Status LEDs**

#### X64 Xcelera-LVDS PX4 End Bracket View



- Connector #1 is for camera taps 1 and 2, while connector #2 is for camera taps 3 and 4.
- Connector #3 is for camera taps 5 and 6, while connector #4 is for camera taps 7 and 8.

Complete the hardware installation process with the connection of a supported camera to the X64 Xcelera-LVDS PX4 board using appropriate VHDCI cables. The camera and board cable connectors are labeled when a cable is purchased from DALSA. Connect the cable as indicated. If however, you fabricate the cable yourself, contact the DALSA Montreal Camera Application group for information and cable diagrams applicable to your camera.

Note: Refer to "External Signals Connector Bracket Assembly" on page 107 for power connections when the X64 Xcelera-LVDS PX4 supplies camera power.

| Status LED 1:               |                                                                        |  |
|-----------------------------|------------------------------------------------------------------------|--|
| Red                         | No camera connected or camera has no power                             |  |
| Green                       | Camera connected and ON. Camera clock detected. No line valid detected |  |
| Slow flashing green (2 Hz)  | Camera Line Valid signal detected                                      |  |
| Fast flashing green (16 Hz) | Acquisition in progress                                                |  |
| Status LED 2:               |                                                                        |  |
| Off                         | Board initialization good                                              |  |
| Red                         | Board initialization error on computer boot-up                         |  |

#### Status LEDs Description

Contact DALSA or browse our web site <u>www.dalsa.com/mv/support</u> for the latest information on X64 Xcelera-LVDS PX4 supported cameras.

# **Camera Connection Examples**

The following diagrams are examples of camera connections for the X64 Xcelera-LVDS PX4. The information presented is generic and does not detail specifics as to camera brand and its signal specifications, or camera cabling requirements.

The various data input configurations are automatically programmed by the parameters defined in the Sapera camera file loaded for the camera in use. Use the Sapera CamExpert tool to configure camera files.

## One Camera – One 8-bit Channel or Tap



#### If the camera has one channel or tap that outputs 8-bits per pixel:

Connect the camera to the 8-bit data port Tap 1, on input connector 1.



## One Camera – Two 8-bit Channels or Taps

#### If the camera has two channels or taps that output 8-bits per pixel:

Connect the camera channel/tap 1 to the 8-bit data port Tap 1, on input connector 1. Connect the camera channel/tap 2 to the 8-bit data port Tap 2, on input connector 1.

## One Camera – Four 8-bit Channels or Taps



#### If the camera has four channels or taps that output 8-bits per pixel:

Connect the camera channel/tap 1 to the 8-bit data port Tap 1, on input connector 1. Connect the camera channel/tap 2 to the 8-bit data port Tap 2, on input connector 1. Connect the camera channel/tap 3 to the 8-bit data port Tap 3, on input connector 2. Connect the camera channel/tap 4 to the 8-bit data port Tap 4, on input connector 2.

## One Camera – Eight 8-bit Channels or Taps



#### If the camera has eight channels or taps that output 8-bits per pixel:

Connect the camera channel/tap 1 to the 8-bit data port Tap 1, on input connector 1. Connect the camera channel/tap 2 to the 8-bit data port Tap 2, on input connector 1. Connect the camera channel/tap 3 to the 8-bit data port Tap 3, on input connector 2. Connect the camera channel/tap 4 to the 8-bit data port Tap 4, on input connector 2. Connect the camera channel/tap 5 to the 8-bit data port Tap 5, on input connector 3. Connect the camera channel/tap 6 to the 8-bit data port Tap 6, on input connector 3. Connect the camera channel/tap 7 to the 8-bit data port Tap 7, on input connector 4. Connect the camera channel/tap 8 to the 8-bit data port Tap 8, on input connector 4.

### One Camera – 24-bit RGB



#### If the camera outputs RGB 24-bit data:

Connect the camera Blue data to input connector 1.  $\hat{}$ 

Connect the camera Green data to input connector 1.

Connect the camera Red data to input connector 2.

See "J12 – Connector 1: RGB-24 & RGB-30 Pinout" on page **93** and "J12 – Connector 2: RGB-24 & RGB-30 Pinout" on page **95** for details.

## One Camera – One 10-bit Channel



#### If the camera has one channel that outputs 10-bits per pixel:

Connect the camera data bits 0-7 to the 8-bit data port Tap 1, on input connector 1. Connect the camera data bits 8, 9 to the first two bits on data port Tap 2, on input connector 1.

## One Camera – Two 10-bit Channels



#### If the camera has two channels that output 10-bits per pixel:

Connect the camera channel #1 data bits 0-7 to the 8-bit data port Tap 1, on input connector 1. Connect the camera channel #1 data bits 8, 9 to the first two bits on data port Tap 2, on input connector 1.

Connect the camera channel #2 data bits 0-7 to the 8-bit data port Tap 3, on input connector 2. Connect the camera channel #2 data bits 8, 9 to the first two bits on data port Tap 4, on input connector 2.



## **One Camera – Four 10-bit Channels**

#### If the camera has four channels that output 10-bits per pixel:

Connect the camera channel #1 data bits 0-7 to the 8-bit data port Tap 1, on input connector 1. Connect the camera channel #1 data bits 8, 9 to the first two bits on data port Tap 2, on input connector 1.

Connect the camera channel #2 data bits 0-7 to the 8-bit data port Tap 3, on input connector 2. Connect the camera channel #2 data bits 8, 9 to the first two bits on data port Tap 4, on input connector 2.

Connect the camera channel #3 data bits 0-7 to the 8-bit data port Tap 5, on input connector 3. Connect the camera channel #3 data bits 8, 9 to the first two bits on data port Tap 6, on input connector 3.

Connect the camera channel #4 data bits 0-7 to the 8-bit data port Tap 7, on input connector 4. Connect the camera channel #4 data bits 8, 9 to the first two bits on data port Tap 8, on input connector 4.

## One Camera – 30-bit RGB



#### If the camera outputs RGB 30-bit data:

Connect the camera Blue data to input connector 1. Connect the camera Green data (bits 0-5) to input connector 1. Connect the camera Green data (bits 6-9) to input connector 2. Connect the camera Red data to input connector 2. See "J12 – Connector 1: RGB-24 & RGB-30 Pinout" on page 93 and "J12 – Connector 2: RGB-24 & RGB-30 Pinout" on page 95 for details.

## One Camera – One 12-bit Channel



#### If the camera has one channel that outputs 12-bits per pixel:

Connect the camera data bits 0-7 to the 8-bit data port Tap 1, on input connector 1. Connect the camera data bits 8-11 to the first four bits on data port Tap 2, on input connector 1.

## One Camera – Two 12-bit Channels



#### If the camera has two channels that output 12-bits per pixel:

Connect the camera channel #1 data bits 0-7 to the 8-bit data port Tap 1, on input connector 1. Connect the camera channel #1 data bits 8-11 to the first four bits on data port Tap 2, on input connector 1.

Connect the camera channel #2 data bits 0-7 to the 8-bit data port Tap 3, on input connector 2. Connect the camera channel #2 data bits 8-11 to the first four bits on data port Tap 4, on input connector 2.



## **One Camera – Four 12-bit Channels**

#### If the camera has four channels that output 12-bits per pixel:

Connect the camera channel #1 data bits 0-7 to the 8-bit data port Tap 1, on input connector 1. Connect the camera channel #1 data bits 8-11 to the first four bits on data port Tap 2, on input connector 1.

Connect the camera channel #2 data bits 0-7 to the 8-bit data port Tap 3, on input connector 2. Connect the camera channel #2 data bits 8-11 to the first four bits on data port Tap 4, on input connector 2.

Connect the camera channel #3 data bits 0-7 to the 8-bit data port Tap 5, on input connector 3. Connect the camera channel #3 data bits 8-11 to the first four bits on data port Tap 6, on input connector 3.

Connect the camera channel #4 data bits 0-7 to the 8-bit data port Tap 7, on input connector 4. Connect the camera channel #4 data bits 8-11 to the first four bits on data port Tap 8, on input connector 4.

# **Configuring Sapera**

# **Viewing Installed Sapera Servers**

The Sapera configuration program (**Start • Programs • DALSA • Sapera LT • Sapera Configuration**) allows the user to see all available Sapera servers for the installed Sapera-compatible boards. The **System** entry represents the system server. It corresponds to the host machine (your computer) and is the only server that should always be present.

## **Increasing Contiguous Memory for Sapera Resources**

The **Contiguous Memory** section lets the user specify the total amount of contiguous memory (a block of physical memory, occupying consecutive addresses) reserved for the resources needed for **Sapera buffers** allocation and **Sapera messaging**. For both items, the **Requested** value dialog box shows the driver default memory setting while the **Allocated** value displays the amount of contiguous memory successfully allocated. The default values will generally satisfy the needs of most applications.

The **Sapera buffers** value determines the total amount of contiguous memory reserved at boot time for the allocation of dynamic resources used for host frame buffer management such as DMA descriptor tables plus other kernel needs. Adjust this value higher if your application generates any out-of-memory error while allocating host frame buffers. You can approximate the amount of contiguous memory required as follows:

- Calculate the total amount of host memory used for frame buffers
   [ number of frame buffers number of pixels per line number of lines (2 if buffer is 10 or 12
   bits) ].
- Provide 1MB for every 256 MB of host frame buffer memory required.
- Add an additional 1 MB if the frame buffers have a short line length, say 1k or less (the increased number of individual frame buffers requires more resources).
- Add an additional 2 MB for various static and dynamic Sapera resources.

• Test for any memory error when allocating host buffers. Simply use the Buffer menu of the Sapera Grab demo program (see "Grab Demo Overview" on page 55) to allocate the number of host buffers required for your acquisition source. Feel free to test the maximum limit of host buffers possible on your host system. The Sapera Grab demo will not crash if the requested host frame buffers cannot be allocated.

#### Host Computer Frame Buffer Memory Limitations

When planning a Sapera application and its host frame buffers used, plus other Sapera memory resources, do not forget the Windows operating system memory needs. As an example, Window XP should always have a minimum of 128 MB for itself.

A Sapera application using *scatter gather buffers* could consume most of the remaining system memory. When using frame buffers allocated as a *single contiguous memory block*, typical limitations are one third of the total system memory with a maximum limit of approximately 100 MB. See the Buffer menu of the Sapera Grab demo program for information on selecting the type of host buffer memory allocation.

# **Contiguous Memory for Sapera Messaging**

The current value for **Sapera messaging** determines the total amount of contiguous memory reserved at boot time for messages allocation, which is used to store arguments when a Sapera functions are called. Increase this value if you are using functions with large arguments, such as arrays and experience any memory errors.
# **Troubleshooting Installation Problems**

# Overview

DALSA has tested the X64 Xcelera-LVDS PX4 (and the X64 family of products) in a variety of computers. Although unlikely, installation problems may occur due to the constant changing nature of computer equipment and operating systems. This section describes what the user can verify to determine the problem or the checks to make before contacting DALSA Technical Support.

If you require help and need to contact DALSA Technical Support, make detailed notes on your installation and/or test results for our technical support to review. See "Contact Information" on page 127.

# **Problem Type Summary**

X64 Xcelera-LVDS PX4 problems either are installation types because the system PCIe bus does not recognize the board hardware (i.e. trained) or function errors due to camera connections or bandwidth issues. The following links jump to various topics in this troubleshooting section.

## First Step: Check the Status LED

A RED Status LED 1 indicates a camera problem, while various Green states indicate the acquisition mode.

Status LED 2, if flashing RED, indicates a PCIe bus problem. If you run the PCI Diagnostics tool, the board is not in the PCI device list. If the board is installed in a computer which supports PCIe GEN2 expansion slots, see section "SW3-2 GEN2 Slot Workaround Details" on page 86.

The complete status LED description is available in the technical reference section (see "Status LEDs Functional Description" on page 87).

# **Possible Installation Problems**

- Hardware PCI bus conflict: When a new installation produces PCI bus error messages or the board driver does not install, it is important to verify that there are no conflicts with other PCI or system devices already installed. Use the DALSA PCI Diagnostic tool as described in "Checking for PCI Bus Conflicts" on page 37. Also, verify the installation via the "Driver Information via the Device Manager Program" on page 40.
- Gen2 slot errors: There is a PCI bus error message from the computer bios. Follow the instructions
   "SW3-2 GEN2 Slot Workaround Details" on page 86.
- Verify Sapera and Board drivers: If there are errors when running applications, confirm that all Sapera and board drivers are running. See "Sapera and Hardware Windows Drivers" on page 39 for details. In addition, DALSA technical support will ask for the log file of messages by DALSA drivers. Follow the instructions describe in "DALSA Log Viewer" on page 41.
- **Firmware update error:** There was an error during the board update procedure. The user usually easily corrects this by following the instructions "Recovering from a Firmware Update Error" on page 39.
- Installation went well but the board does not work or stopped working. Review these steps described in "Symptoms: CamExpert Detects no Boards" on page 42.

## **Possible Functional Problems**

 Driver Information: Use the DALSA device manager program to view information about the installed X64 Xcelera-LVDS PX4 board and driver. See "Driver Information via the Device Manager Program" on page 40.

Sometimes the problem symptoms are not the result of an installation issue but due to other system issues. Review the sections described below for solutions to various X64 Xcelera-LVDS PX4 functional problems.

- "Symptoms: X64 Xcelera-LVDS PX4 Does Not Grab" on page 42
- "Symptoms: Card grabs black" on page 43
- "Symptoms: Card acquisition bandwidth is less than expected" on page 43

# **Troubleshooting Procedures**

The following sections provide information and solutions to possible X64 Xcelera-LVDS PX4 installation and functional problems. A summary of these topics is in the previous section of this manual.

# **Checking for PCI Bus Conflicts**

One of the first items to check when there is a problem with any PCI board is to examine the system PCI configuration and ensure that there are no conflicts with other PCI or system devices. The *PCI Diagnostic* program (**cpcidiag.exe**) allows examination of the PCI configuration registers and can save this information to a text file. Run the program via the Windows Start Menu shortcut **Start • Programs • DALSA • Sapera LT • Tools • PCI Diagnostics**.

As shown in the following screen image, use the first drop menu to select the PCI device to examine. Select the device from DALSA. Note the bus and slot number of the installed board (this will be unique for each system unless systems are setup identically). Click on the **Diagnostic** button to view an analysis of the system PCI configuration space.

| 📉 PCI Diag | nostic 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|            | PCI device           X64 Xcelera-LVDS PX4 from DALSA (bus 2, slot 0, function 0)         ▼           Vendor ID         0x11EC           Device ID         0x2520           InitLine         0x10           SubVendID         0x0004           SubVendID         0x0001           Line size         0x10           Command         0x0001           Command         0x10           Command         0x000           Status         0x000           Status         0x000 | ices Refresh                                |
| DALSA      | Base address registers         Expansion ROM           0         0xF000000C to 0xF03FFFFF         Mem         Pre         64-bit         View           1          Mem         Pre         64-bit         View           2          Mem         Pre         64-bit         View           3          1/0         Pre          View           4          1/0         Pre          Second. Bus            5          1/0         Pre         View         Bridge Ctrl   | Enabled<br>Diagnostic<br>Save<br>Help<br>OK |

Clicking on the **Diagnostic** button opens a new window with the diagnostic report. From the PCI Bus Number drop menu, select the bus number associated with the X64 Xcelera-LVDS PX4—in this example, the slot is bus 2.

The window now shows the I/O and memory ranges used by each device on the selected PCI bus. The information display box will detail any PCI conflicts. If there is a problem, click on the **Save** button. A file named '**pcidiag.txt**' is created (in the Sapera\bin directory) with a dump of the PCI configuration registers. Email this file when requested by the DALSA Technical Support group along with a full description of your computer.

| Diagnostic                                                                                                                        |                                                                   | 23 |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----|
| PCI bus<br>Number<br>Bus 2<br>Range<br>1/0: 0x00000000-0x00000000<br>Mem: 0x700000-0x77/fffff<br>Pref: 0x00000000000000-0x0000000 | I/O range<br>Memory range<br>000000000000000000000000000000000000 |    |
| No conflict in PCI configuration for bus 2.                                                                                       |                                                                   | _  |
| < III<br>Display warnings                                                                                                         | Save OK                                                           | •  |

### Windows Device Manager

From the Windows Start Menu, select **Start • Control Panel • System • Hardware • Device Manager**. As shown in the following screen images, look for *X64 Xcelera-LVDS PX4* board under "Imaging Devices". Double-click and look at the device status. You should see "This device is working properly." Go to "Resources" tab and make certain that the device has no conflicts.



## **GEN2 PCI Slot Computer Issue**

At boot time, the PX4 status LED 2 keeps on flashing red. If you run the PCI Diagnostics tool, the PX4 is not in the PCI device list. If the board is installed in a computer which supports PCIe GEN2 expansion slots, see section "SW3-2 GEN2 Slot Workaround Details" on page 86.

## Sapera and Hardware Windows Drivers

The next step is to make certain the appropriate DALSA drivers have started successfully during the boot sequence. Example, click on the **Start • Programs • Accessories • System Tools • System Information • Software Environment**. Click on **System Drivers**. Make certain the following drivers have started for the **X64 Xcelera-LVDS PX4**.

| Device               | Description                    | Туре          | Started |
|----------------------|--------------------------------|---------------|---------|
| Corx64xcelerapx4lvds | X64 Xcelera-LVDS PX4 messaging | Kernel Driver | Yes     |
| CorLog               | Sapera Log viewer              | Kernel Driver | Yes     |
| CorMem               | Sapera Memory manager          | Kernel Driver | Yes     |
| CorPci               | Sapera PCI configuration       | Kernel Driver | Yes     |
| CorSerial            | Sapera Serial Port manager     | Kernel Driver | Yes     |

DALSA Technical Support may request that you check the status of these drivers as part of the troubleshooting process.

# **Recovering from a Firmware Update Error**

This procedure is required if any failure occurred while updating the X64 Xcelera-LVDS PX4 firmware on installation or during a manual firmware upgrade. On the chance the board has corrupted firmware, any Sapera application such as CamExpert or the grab demo program will not find an installed board to control.

Possible reasons for firmware loading errors or corruption are:

- Computer system mains power failure or deep brownout.
- System PCI bus or checksum errors.
- PCI bus timeout conditions due to other devices.
- Users forcing an upload using an invalid firmware source file.

When the X64 Xcelera-LVDS PX4 firmware is corrupted, executing a manual firmware upload will not work because the firmware loader cannot communicate with the board. In an extreme case, corrupted firmware may even prevent Windows from booting.

*Solution*: The user manually forces the board to initialize from write-protected firmware designed only to allow driver firmware uploads. When the firmware upload is complete, reboot the board to initialize in its normal operational mode.

- Note that this procedure may require removing the X64 Xcelera-LVDS PX4 board several times from the computer.
- *Important*: Referring to the board's user manual (in the connectors and jumpers reference section), identify the configuration switch location. The Boot Recovery Mode switch for the X64 Xcelera-LVDS PX4 is SW3-1 (see "SW3: " on page 86).
- Shut down Windows and power OFF the computer.
- Move the switch SW3-1 to ON, for the boot recovery mode position. (The default position is SW3-1 to OFF for normal operation).
- Power on the computer. Windows will boot normally.
- When Windows has started, do a manual firmware update procedure to update the firmware again (see "Executing the Firmware Loader from the Start Menu" on page 14).
- When the update is complete, shut down Windows and power off the computer.
- Set the SW3-1 switch back to the OFF position (i.e. default position) and power on the computer once again.
- Verify that the frame grabber is functioning by running a Sapera application such as CamExpert. The Sapera application will now be able to communicate with the X64 Xcelera-LVDS PX4 board.

## Driver Information via the Device Manager Program

The Device Manager program provides a convenient method of collecting information about the installed X64 Xcelera-LVDS PX4 Full. System information such as operating system, computer CPU, system memory, PCI configuration space, plus X64 Xcelera-LVDS PX4 firmware information is displayed or written to a text file (default file name – BoardInfo.txt). Note that this tool is also used to upload firmware to the X64 Xcelera-LVDS PX4 Full.

Execute the program via the Windows Start Menu shortcut Start • Programs • DALSA • X64 Xcelera-LVDS PX4 Device Driver • Device Manager. If the Device Manager program does not run, it will exit with a message that the board was not found. Since the X64 Xcelera-LVDS PX4 board must have been in the system to install the board driver, possible reasons for an error are:

- Board was removed
- Board driver did not start or was terminated
- PCI conflict after some other device was installed

### Information Window

The following figure shows the Device Manager Information screen. Click to highlight one of the board components and the right hand windowpane displays information for that item, as described below.

| File Help                           | File Help            |          |   |  |  |  |  |
|-------------------------------------|----------------------|----------|---|--|--|--|--|
| Device Info Manager                 |                      |          |   |  |  |  |  |
| Program Refresh Reset               |                      |          |   |  |  |  |  |
| Device                              | Information          |          |   |  |  |  |  |
| EXcelera-LVDS_PX4_1                 | Field                | Value    |   |  |  |  |  |
| Information<br>Firmulare            | Issue                | A        |   |  |  |  |  |
| ACU/DTE + PCle x4 Interface         | Revision             | 1        |   |  |  |  |  |
|                                     | Vendor ID            | 0x11EC   |   |  |  |  |  |
|                                     | Last ECO             | 4252     | E |  |  |  |  |
|                                     | 0x0000               |          |   |  |  |  |  |
|                                     | Extension            | 0        |   |  |  |  |  |
|                                     | Serial Number        | S4401043 |   |  |  |  |  |
|                                     | Component Version    | 0        |   |  |  |  |  |
|                                     | Optional ECO         | 0x0      |   |  |  |  |  |
|                                     | Sub-Template Version | 4        |   |  |  |  |  |
| Board Model Xcelera-LVDS_PX4 Single |                      |          |   |  |  |  |  |
| Device Info Firmware Update         |                      |          |   |  |  |  |  |
| Output                              |                      |          |   |  |  |  |  |
|                                     |                      |          | * |  |  |  |  |

- Select **Information** to display identification and information stored in the X64 **Xcelera-LVDS** PX4 firmware.
- Select Firmware to display version information for the firmware components.
- Select one of the firmware components to load *custom* firmware when supplied by DALSA engineering for a future feature.
- Click on **File Save Device Info** to save all information to a text file. Email this file when requested by Technical Support.

# DALSA Log Viewer

An additional step in the verification process is to save in a text file the information collected by the Log Viewer program. Run the program via the Windows Start Menu shortcut Start • Programs • DALSA • Sapera LT • Tools • Log Viewer.

The Log Viewer lists information about the installed DALSA drivers. Click on **File** • **Save** and at the prompt enter a text file name to save the Log Viewer contents. Email this text file to DALSA Technical Support when requested or as part of your initial contact email.

## Memory Requirements with Area Scan Acquisitions

The X64 Xcelera-LVDS PX4 allocates two frame buffers in onboard memory, each equal in size to the acquisition frame buffer. This double buffering memory allocation is automatic at the driver level. The X64 Xcelera-LVDS PX4 driver uses two buffers to ensure that the acquired video frame is complete and not corrupted in cases where the image transfer to host system memory may be interrupted and delayed by other host system processes. That is, the image acquisition to one frame buffer is not interrupted by any delays in transfer of the other frame buffer (which contains the previously acquired video frame) to system memory.

The total size of the two internal frame buffers must be somewhat smaller than the total onboard memory due to memory overhead required for image transfer management. When the X64 Xcelera-LVDS PX4 does not have enough onboard memory for two frame buffers, the memory error message [Error: "CorXferConnect" <Xfer module> - No memory () ] occurs when loading a Sapera camera file, or when the application configures a frame buffer.

## Symptoms: CamExpert Detects no Boards

• If using Sapera version 6.10 or later:

When starting CamExpert, if there are no DALSA board detected, CamExpert will start in offline mode. There is no error message and CamExpert is functional for creating or modifying a camera configuration file. If CamExpert should have detected the installed board, troubleshoot the installation problem as described below.

### **Troubleshooting Procedure**

When CamExpert detects no installed DALSA board, there could be a hardware problem, a PnP problem, a PCI problem, a kernel driver problem, or a software installation problem.

- Make certain the card is properly inserted in PCIe slot.
- Perform all installation checks described in this section before contacting Technical Support.
- Try the board in a different PCIe slot if available.

# Symptoms: X64 Xcelera-LVDS PX4 Does Not Grab

You are able to start Sapera CamExpert but you do not see an image and the frame rate displayed is 0.

- Verify the camera is powered on.
- Verify the camera and timing parameters with the camera in free run mode.
- Verify you can grab with the camera in free run mode.
- Make certain that you provide an external trigger if the camera configuration requires one. Use the software trigger feature of CamExpert if you do not have a trigger source.
- Make certain that the camera cable is properly connected.
- Make certain that the camera is configured properly for the required operation. This must match the camera configuration file. Refer to your camera datasheet.
- Try to snap one frame instead of continuous grab.
- Perform all installation checks described in this section before contacting Technical Support.

## Symptoms: Card grabs black

You are able to use Sapera CamExpert, the displayed frame rate is as expected, but the display is always black.

- Set your camera to manual exposure mode, set the exposure to a longer period, and open the lens iris.
- Try to snap one frame instead of continuous grab.
- Make certain that the input LUT is not programmed to output all '0's.
- A PCIe transfer issue sometimes causes this problem. No PCIe transfer takes place, so the frame rate is above 0 but nevertheless no image is displayed in CamExpert.
- Make certain that BUS MASTER bit in the PCIe configuration space is activated. Look in PCI Diagnostics for the **BM** button under "Command" group. Make certain that the **BM** button is activated.
- Perform all installation checks described in this section before contacting Technical Support.

# Symptoms: Card acquisition bandwidth is less than expected

The X64 Xcelera-LVDS PX4 acquisition bandwidth is less than expected.

- Review the system for problems or conflicts with other expansion boards or drivers.
- Remove other PCI Express, PCI-32 or PCI-64 boards and check acquisition bandwidth again. Engineering has seen this case where other PCI boards in some systems cause limitations in transfers. Each system, with its combination of system motherboard and PCI boards, will be unique and will need to be tested for bandwidth limitations affecting the imaging application.
- Is the X64 Xcelera-LVDS PX4 installed in a PCI Express x16 slot? Note that some computer's x16 slot may only support non x16 boards at x1 speed or not at all. Check the computer documentation or test an X64 Xcelera-LVDS PX4 installation. Note that the X64 Xcelera-LVDS PX4 board does not function at x1 speeds.

# **CamExpert Quick Start**

# **Interfacing Cameras with CamExpert**

CamExpert is the camera-interfacing tool for frame grabber boards supported by the Sapera library. CamExpert generates the Sapera camera configuration file (*yourcamera.ccf*) based on timing and control parameters entered. For backward compatibility with previous versions of Sapera, CamExpert also reads and writes the \*.cca and \*.cvi camera parameter files.

Every Sapera demo program starts by a dialog window to select a camera configuration file. Even when using the X64 Xcelera-LVDS PX4 with common video signals, a camera file is required. Therefore, CamExpert is typically the first Sapera application run after an installation. Previously created .ccf files are easily usable with a new Sapera installation when copied into that system.

## **CamExpert Example with a Monochrome Camera**

The image below shows CamExpert with the X64 Xcelera-LVDS PX4. The selected camera outputs monochrome 8-bit video. After selecting the camera model, the default timing parameters are displayed and the user can test by clicking on *Grab*. CamExpert descriptions follow the image.



The CamExpert sections are:

- **Device:** Select which acquisition device to control and configure a camera file. Required in cases where there are multiple boards in a system and when one board supports multiple acquisition types. Note in this example, the X64 Xcelera-LVDS PX4 has firmware for monochrome or RGB cameras.
- Camera: Select the timing for a specific camera model included with the Sapera installation unless a • new camera type is used. The User's subsection is where created camera files are stored.
- Timing & Control Parameters: The central section of CamExpert provides access to the various • Sapera parameters supported by X64 Xcelera-LVDS PX4. There are four or five tabs dependent on the acquisition board, as described below:

| Basic Timing Parameters         | Basic parameters used to define the timing of the camera. This includes the vertical, horizontal, and pixel clock frequency. This tab is sufficient to configure a free-running camera.     |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced Control Parameters     | Advanced parameters used to configure camera control mode<br>and strobe output. Also provides analog signal conditioning<br>(brightness, contrast, DC restoration, etc.) for analog boards. |
| External Trigger Parameters     | Parameters to configure the external trigger characteristics.                                                                                                                               |
| Image Buffer and AOI Parameters | Control of the host buffer dimension and format.                                                                                                                                            |
| Multi-Camera Control Parameters | Dependent on the frame acquisition board, provides camera selection and color planar transfer selection.                                                                                    |

- **Display:** An important component of CamExpert is its live acquisition display, which allows • immediate verification of timing or control parameters without the need to run a separate acquisition program. Grab starts continuous acquisition (button then toggles to Freeze to stop). Snap is a single frame grab. **Trigger** is a software trigger to emulate an external source.
- Output Messages and Bottom Status Bar: Window displays event and error messages. Displays camera connection status where green indicates signal present.

For context sensitive help click on the button then click on a camera configuration parameter. A

popup shows a short description of the configuration parameter. Click on the 😵 button to open the help file for more descriptive information on CamExpert.

# **CamExpert Demonstration and Test Tools**

The CamExpert utility also includes a number of demonstration features, which make CamExpert the primary tool to configure, test and calibrate your camera and imaging setup. Display tools include, image pixel value readout, image zoom, and line profiler. Functional tools include hardware Flat Field calibration and operation support.

# Camera Files Distributed with Sapera

The Sapera distribution CDROM includes camera files for a selection of X64 Xcelera-LVDS PX4 supported cameras. Using the Sapera CamExpert program, you may use the camera files (CCA) provided to generate a camera configuration file (CCF) that describes the desired camera and frame grabber configuration.

Browse our web site [ www.dalsa.com/mv/support ] for the latest information and application notes on X64 Xcelera-LVDS PX4 supported cameras.

DALSA continually updates a camera application library composed of application information and prepared camera files. Along with the camera search utility on the DALSA web site, as described above, a number of camera files are ready to download from the DALSA FTP site [<u>ftp://ftp.dalsa.com/Public/Sapera/CamFile\_Updates/</u>]. Camera files are ASCII text and are read with Windows Notepad or any other text file reader, on any computer without having Sapera installed.

### **CamExpert Memory Errors when Loading Camera Configuration Files**

The memory error message [Error: "CorXferConnect" <Xfer module> - No memory ()] may occur when loading a Sapera camera file, or when the application configures a frame buffer for area scan cameras. The problem is that the X64 Xcelera-LVDS PX4 does not have enough onboard memory for two frame buffers.

The X64 Xcelera-LVDS PX4 when used with area scan cameras, allocates two internal frame buffers in onboard memory, each equal in size to the acquisition frame buffer. This allocation is automatic at the driver level. The X64 Xcelera-LVDS PX4 driver allocates two buffers to ensure that the acquired video frame is complete and not corrupted in cases where the transfer to host system memory may be interrupted by other host system processes.

The total size of the two internal frame buffers must be somewhat smaller than the total onboard memory due to memory overhead required for image transfer management. Note that the X64 Xcelera-LVDS PX4 board when configured for two Base inputs, equally divides the onboard memory between the two acquisition modules, reducing the available memory for the two buffers by half.

# Overview of Sapera Acquisition Parameter Files (\*.ccf or \*.cca/\*.cvi)

### Concepts and Differences between the Parameter Files

There are two components to the legacy Sapera acquisition parameter file set: CCA files (also called camfiles) and CVI files (also called VIC files, i.e. video input conditioning). The files store video-signal parameters (CCA) and video conditioning parameters (CVI), which in turn simplifies programming the frame-grabber acquisition hardware for the camera in use. **Sapera LT 5.0** introduces a new camera configuration file (**CCF**) that combines the CCA and CVI files into one file.

Typically, a camera application will use a CCF file per camera operating mode (or one CCA file in conjunction with several CVI files, where each CVI file defines a specific camera-operating mode). An

application can also have multiple CCA/CCF files to support different image format modes supported by the camera or sensor (such as image binning or variable ROI).

### **CCF File Details**

Files using the ".CCF" extension, (Camera Configuration files), combine the camera (CCA) and frame grabber (CVI) parameters into one file for easier configuration file management. This is the default Camera Configuration file used with Sapera LT 5.0 and the CamExpert utility.

### **CCA File Details**

DALSA distributes camera files using the ".CCA" extension, (CAMERA files), which contain all parameters describing the camera video signal characteristics and operation modes (what the camera outputs). The Sapera parameter groups within the file are:

- Video format and pixel definition
- Video resolution (pixel rate, pixels per line, lines per frame)
- Synchronization source and timing
- Channels/Taps configuration
- Supported camera modes and related parameters
- External signal assignment

#### **CVI File Details**

Legacy files using the ".CVI" extension contain all operating parameters related to the frame grabber board - what the frame grabber can actually do with camera controls or incoming video. The Sapera parameter groups within the file are:

- Activate and set any supported camera control mode or control variable.
- Define the integration mode and duration.
- Define the strobe output control.
- Allocate the frame grabber transfer ROI, the host video buffer size and buffer type (RGB888, RGB101010, MONO8, and MONO16).
- Configuration of line/frame trigger parameters such as source (internal via the frame grabber /external via some outside event), electrical format (TTL, RS-422, OPTO-isolated), and signal active edge or level characterization.

# **Camera Interfacing Check List**

Before interfacing a camera from scratch with CamExpert:

- Confirm that DALSA has not already published an application note with camera files [www.dalsa.com/mv/support].
- Confirm that the correct version or board revision of X64 Xcelera-LVDS PX4 is used.
- Confirm that Sapera does not already have a .cca file for your camera installed on your hard disk. If there is a .cca file supplied with Sapera, then use CamExpert to automatically generate the .ccf file with default parameter values matching the frame grabber capabilities.
- Check if the Sapera installation has a similar type of camera file. A similar .cca file can be loaded into CamExpert, then modified to match timing and operating parameters for your camera, and lastly save them as Camera Configuration file (.ccf).
- Finally, if Sapera has no applicable camera file, run CamExpert after installing Sapera and the acquisition board driver, select the board acquisition server, and manually enter the camera parameters.

# **Using the Flat Field Correction Tool**

Flat Field Correction is the process of eliminating small gain differences between pixels in a sensor array or from lens elements. That sensor when exposed to a uniformly lit field will have no gray level differences between pixels with calibrated flat field correction applied to the image. The CamExpert Flat Field tool functions with hardware supporting flat field processing.

# X64 Xcelera-LVDS PX4 Flat Field Support

The X64 Xcelera-LVDS PX4 supports hardware based real-time Flat Field Correction with monochrome cameras.

**Important:** Flat field and flat line correction impose limitations to the maximum acquisition frame rate. Please contact the DALSA support group for more details on camera specific maximum supported acquisition rates.

### Loading the Required Camera File

Select the required camera configuration file for the connected camera. Verify the acquisition with the live grab function. Make camera adjustments to get good images.

Also at this time, make preparations to grab a flat gray level image such as a clean evenly lit white wall or non-glossy paper. Note the lens iris position for a white but not saturated image. This white image is required for the calibration process.

## Set up Dark and Bright Acquisitions with the Histogram Tool

Before performing calibration, verify the acquisition with a live grab. Also at this time, make preparations to grab a flat light gray level image, required for the calibration, such as a clean evenly lighted white wall or non-glossy paper with the lens slightly out of focus. Ideally, aim a controlled diffused light source directly at the lens. Note the lens iris position for a bright but not saturated image. Additionally check that the lens iris closes well or have a lens cover to grab the dark calibration image.

### Verify a Dark Acquisition

Close the camera lens iris and cover the lens with a lens cap. Using CamExpert, click on the grab button and then the histogram button. The following figure shows a typical histogram for a very dark image.



**Important:** In this example, the **average** pixel value for the frame is close to black. Also, note that most sensors will show a much higher maximum pixel value due to one or more "hot pixels". The sensor specification accounts for a small number of hot or stuck pixels (pixels that do not react to light over the full dynamic range specified for that sensor).

### Verify a Bright Acquisition

Aim the camera at a diffused light source or evenly lit white wall with no shadows falling on it. Using CamExpert, click on the grab button and then the histogram button. Use the lens iris to adjust for a bright gray approximately around a pixel value of 200 (for 8-bit pixels). The following figure shows a typical histogram for a bright gray image.



**Important:** In this example, the **average** pixel value for the frame is bright gray. Also, note that sensors may show a much higher maximum or a much lower minimum pixel value due to one or more "hot or dead pixels". The sensor specification accounts for a small number of hot, stuck, or dead pixels (pixels that do not react to light over the full dynamic range specified for that sensor).

Once the bright gray acquisition setup is done, note the camera position and lens iris position to be able to repeat it during the calibration procedure.

## Flat Field Correction Calibration Procedure

Calibration is the process of taking two reference images, one of a black field – one of a light gray field (not saturated), to generate correction data for images captured by the sensor. Each captured pixel data is modified by the correction factor generated by the calibration process, so that each pixel now has an identical response to the same illumination.

Start the Flat Field calibration tool via the CamExpert menu bar: **Pre-Processing • Flat Field Correction • Calibration**.

### Flat Field Calibration Window

The Flat Field calibration window provides a three-step process to acquire two reference images and then save the flat field correction data for the camera used. To aid in determining if the reference images are valid, use the histogram tool to review the images used for the correction data.

| 800       400         400       400         200       0       32       64       96       128       160       192       224       255         Histogram Selector: No image available       ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nistogramm                                                                                 |                                                                                  |                                          |                                |              |             |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------|--------------------------------|--------------|-------------|---------|
| 600       400         400       400         200       0       32       64       96       128       160       192       224       255         Histogram Selector: No image available ▼         Generation of Calibration files         Step 1: Acquire a black image (We recommend an average gray level pixel value below (Warning Pixels in image must not be staturated)         Acquire White Image       Step 2: Acquire a White Image       Step 3: Save Calibration offset and gain files (Optional)         Step 3: Save Calibration settings (Optional)       Save       Advanced calibration settings         Advanced calibration.       Ettings       Fleady for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  |                                          |                                |              |             |         |
| 400<br>200<br>0 32 64 96 128 160 192 224 255<br>Histogram Selector: No image available<br>Generation of Calibration files<br>Step 1: Acquire a black image. (We recommend an average gray level pixel value below<br>Acquire glack Image<br>Step 2: Acquire a white image. (We recommend an average gray level pixel value above<br>(Warning: Pixels in image must not be statuated)<br>Acquire White Image<br>Step 3: Save Calibration offset and gain files (Optional)<br>Save<br>Advanced calibration settings (Optional)<br>Advanced Settings<br>Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 600                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  |                                          |                                |              |             |         |
| 200       0       32       64       96       128       150       132       224       255         Histogram Selector: No image available         Step 1: Acquire a black image (We recommend an average gray level pixel value below         Colspan="2">Colspan="2">Step 1: Acquire a black image (We recommend an average gray level pixel value above (Warning Pixels in image must not be staturated)         Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning Pixels in image must not be staturated)         Acquire White Image         Step 3: Save Calibration offset and gain files (Optional)         Save         Advanced calibration settings (Optional)         Advanced Settings         Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                             | 400                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  |                                          |                                |              |             |         |
| 0       32       64       96       128       160       192       224       255         Histogram Selector: No image available         Istogram Selector: No image available       Image       Image | 200                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  |                                          |                                |              |             |         |
| Histogram Selector: No image available<br>Generation of Calibration files Step 1: Acquire a black image. (We recommend an average gray level pixel value below Acquire Black Image Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning: Pixels in image must not be statuated) Acquire White Image Step 3: Save Calibration offset and gain files (Optional) Save Advanced calibration settings (Optional) Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                        | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64                                                                                         | 96                                                                               | 128                                      | 160                            | 192          | 224         | 255     |
| Histogram Selector: No image available  Generation of Calibration files Step 1: Acquire a black image. (We recommend an average gray level pixel value below Acquire glack Image Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning: Pixels in image must not be staturated) Acquire White Image Step 3: Save Calibration offset and gain files (Optional) Save Advanced calibration settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  |                                          |                                |              |             |         |
| Itistogram Selector: No image available Generation of Calibration files Step 1: Acquire a black image. (We recommend an average gray level pixel value below Acquire Black Image Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning: Pixels in image must not be statuated) Acquire White Image Step 3: Save Calibration offset and gain files (Optional) Save Advanced calibration settings (Optional) Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | <b>.</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |                                                                                  |                                          |                                |              |             |         |
| Seneration of Calibration files Step 1: Acquire a black image. (We recommend an average gray level pixel value below Acquire Black Image Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warring: Pixels in image must not be staturated) Acquire White Image Step 3: Save Calibration offset and gain files (Optional) Save Advanced calibration settings (Optional) Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Histogram                                | Selector: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lo image av                                                                                | vailable                                                                         | •                                        |                                |              |             |         |
| Step 1: Acquire a black image. (We recommend an average gray level pixel value below         Acquire [Black. Image]         Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning Pixels in image must not be staturated)         Acquire White Image         Step 3: Save Calibration offset and gain files (Optional)         Sove         Advanced calibration settings (Optional)         Advanced Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seneration                               | o of Calibratic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nn files —                                                                                 |                                                                                  |                                          |                                |              |             |         |
| Step 1: Acquire a black image. (We recommend an average gray level pixel value below         Acquire [Black Image]         Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning: Pixels in image must not be statuated)         Acquire White Image         Step 3: Save Calibration offset and gain files (Optional)         Save         Advanced calibration settings (Optional)         Advanced Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  |                                          |                                |              |             |         |
| Acquire Black Image         Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning Pixels in image must not be staturated)         Acquire White Image         Step 3: Save Calibration offset and gain files (Optional)         Save         Advanced calibration settings (Optional)         Advanced Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Step 1:                                  | Acquire a b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lack image                                                                                 | (We reco                                                                         | mmend ar                                 | i average i                    | gray level p | ixel value  | below 6 |
| Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning: Pixels in image must not be staturated)         Acquire White Image         Step 3: Save Calibration offset and gain files (Optional)         Save         Advanced calibration settings (Optional)         Advanced Settings         Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cquire <u>B</u> lac                                                                        | k Image                                                                          |                                          |                                |              |             |         |
| Step 2: Acquire a white image. (We recommend an average gray level pixel value above (Warning: Pixels in image must not be staturated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                                                                  |                                          |                                |              |             |         |
| (Warning: Pixels in image must not be staturated)         Acquire White Image         Step 3: Save Calibration offset and gain files (Optional)         Save         Advanced calibration settings (Optional)         Advanced Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | daite income                                                                               |                                                                                  |                                          |                                |              |             |         |
| Acquire Write Image         Step 3: Save Calibration offset and gain files (Optional)         Save         Advanced calibration settings (Optional)         Advanced Settings         Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Step 2:                                  | Acquire a w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nite image.                                                                                | . [We reco                                                                       | mmend ar                                 | average :                      | gray level p | bixel value | above 6 |
| Acquire swinte image Step 3: Save Calibration offset and gain files (Optional) Save Advanced calibration settings (Optional) Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step 2:                                  | Acquire a w<br>(Warning: P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ixels in image.                                                                            | . (We reca<br>ge must ni                                                         | ommend ar<br>ot be statu                 | n average ;<br>rated)          | gray level p | pixel value | above 6 |
| Step 3: Save Calibration offset and gain files (Optional) Save Advanced calibration settings (Optional) Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Step 2:                                  | Acquire a w<br>(Warning: P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | riite image.<br>'ixels in ima                                                              | . (We reco<br>ge must n                                                          | ommend ar<br>ot be statu<br>I            | n average<br>rated)            | gray level p | oixel value | above 6 |
| Step 3: Save Laboration critet and gain riles (Uptional)       Save       Advanced calibration settings (Optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Step 2:                                  | Acquire a w<br>(Warning: P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rike in age.<br>'ixels in ima<br>oquire <u>W</u> hit                                       | . (We reco<br>ge must n<br>te Image                                              | ommend ar<br>ot be statu                 | n average<br>rated)            | gray level ( | oixel value | above 6 |
| Advanced calibration settings (Optional) Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Step 2:                                  | Acquire a w<br>(Warning: P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ixels in ima<br>ixels in ima<br>squire <u>W</u> hit                                        | . (We reco<br>ge must n<br>te image                                              | ommend ar<br>ot be statu                 | rated)                         | gray level ( | oixel value | above 6 |
| Advanced calibration settings (Optional) Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Step 2:<br>Step 3:                       | Acquire a w<br>(Warning: P<br>Ac<br>Save Calibr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rike image.<br>ixels in ima<br>cquire <u>W</u> hit<br>ation offset                         | . (We reco<br>ge must n<br>te Image<br>t and gain                                | nmend ar<br>ot be statu<br>files (Optic  | n average ;<br>rated)<br>mal)  | gray level p | oixel value | above 6 |
| Advanced calibration settings (Optional) Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Step 2:<br>Step 3:                       | Acquire a w<br>(Warning: P<br>Ac<br>Save Calibr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rite image.<br>ixels in ima<br>squire <u>W</u> hit<br>ation offset<br>Save                 | . (We reco<br>ge must n<br>te Image<br>t and gain                                | ommend ar<br>ot be statu<br>             | n average ;<br>rated)<br>mal)  | gray level p | pixel value | above 6 |
| Advanced Settings Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Step 2:<br>Step 3:                       | Acquire a w<br>(Warning: P<br>Ac<br>Save Calibr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rike Image.<br>ixels in ima<br>oquire <u>W</u> hit<br>ation offset<br>Save                 | . (We reco<br>ge must no<br>te Image<br>t and gain                               | ommend ar<br>ot be statu<br>files (Optic | n average ;<br>rated)<br>mal)  | gray level p | oixel value | above 6 |
| Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Step 2:<br>Step 3:<br>Advanc             | Acquire a w<br>(Warning: P<br>Ac<br>Save Calibr<br>ed calibratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rike Image.<br>ixels in ima<br>cquire <u>W</u> hit<br>ation offset<br>Save<br>n settings ( | . (We reco<br>ge must n<br>te Image<br>t and gain<br>e<br>Optional)              | mmend ar<br>ot be statu<br>files (Optic  | n average :<br>rated)<br>mal)  | gray level ( | oixel value | above 6 |
| Ready for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Step 2:<br>Step 3:<br>Advanc             | Acquire a w<br>(Warning: P<br>Ac<br>Save Calibr<br>ed calibratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ixels in ima<br>oquire <u>W</u> hit<br>ation offset<br>Save<br>n settings (                | . (We reco<br>ge must n<br>te Image<br>t and gain<br>e<br>Optional)              | mmend ar<br>ot be statu<br>files (Optic  | n average :<br>rated)<br>mal)  | gray level ( | oixel value | above 6 |
| Heady for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Step 2:<br>Step 3:<br>Advanc             | Acquire a w<br>(Warning: P<br>Ac<br>Save Calibr<br>ed calibratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ixels in ima<br>oquire <u>W</u> hit<br>ation offset<br>Save<br>n settings (                | . (We reco<br>ge must no<br>te Image<br>t and gain<br>e<br>Optional)<br>Settings | ommend ar<br>ot be statu<br>files (Optic | n average<br>rated)<br>mal)    | gray level ( | pixel value | above I |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step 2:<br>Step 3:<br>Advanc             | Acquire a w<br>(Warning: P<br>Save Calibr<br>ed calibratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rixels in ima<br>equire <u>W</u> hit<br>ation offset<br>Save<br>n settings (<br>Advanced S | . (We reco<br>ge must ni<br>te Image<br>t and gain<br>e<br>Optional)<br>Settings | mmend ar<br>ot be statu<br>files (Optic  | n average<br>rated)<br>inal)   | gray level f | oixel value | above 6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step 2:<br>Step 3:<br>Advanc             | Acquire a w<br>(Warning: P<br>Save Calibr<br>ed calibratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ixels in ima<br>cquire <u>W</u> hit<br>ation offset<br>Save<br>n settings (<br>Advanced S  | , (We reco<br>ge must ni<br>te Image<br>t and gain<br>e<br>Optional)<br>Settings | mmend ar<br>ot be statu<br>files (Optic  | n average :<br>rated)<br>inal) | gray level ( | value       | above 6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step 2:<br>Step 3:<br>Advanc             | Acquire a w (Warning: P Acquire a w (Warning: P Acquire a w Acquir | rinde in age<br>ixels in ima<br>ation offset<br>Save<br>n settings (<br>advanced S         | . (We reco<br>ge must ni<br>te Image<br>t and gain<br>e<br>Optional)<br>Settings | mmend ar<br>ot be statu<br>files (Optic  | n average :<br>rated)<br>inal) | gray level ( | value       | above 6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step 2:<br>Step 3:<br>Advanc             | Acquire a w<br>(Warning: P<br>Save Calibr<br>ed calibratio<br>calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rine in age<br>ixels in ima<br>ation offset<br>Save<br>Save<br>n settings (                | . (We reco<br>ge must no<br>te Image<br>t and gain<br>e<br>Optional)<br>Settings | mmend ar<br>ot be statu<br>files (Optic  | n average ;<br>rated)<br>mal)  | gray level ( | value       | above 6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step 2:<br>Step 3:<br>Advanc             | Acquire a w<br>(Warning: P<br>Save Calibr<br>ed calibratio<br>A<br>r calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rinde integer<br>ixels in ima<br>equire <u>Whit</u><br>ation offset<br>Save<br>Save        | . (We reco<br>ge must no<br>te Image<br>t and gain<br>e<br>Optional)<br>Settings | mmend ar<br>ot be statu<br>files (Optic  | n average ;<br>rated)<br>mal)  | gray level ( | value       | above   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step 2:<br>Step 3:<br>Advanc<br>Ready fo | Acquire a w<br>(Warning: P<br>Save Calibr<br>ed calibratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ixels in ima<br>oquire Whit<br>ation offset<br>Save<br>n settings (<br>Advanced S          | . (We reco<br>ge must no<br>te Image<br>t and gain<br>e<br>Optional)<br>Settings | mmend ar<br>ot be statu<br>files (Optic  | n average ;<br>rated)<br>(nal) | gray level ( | value:      | above f |

• Setup the camera to capture a uniform black image. Black paper with no illumination and the camera lens' iris closed to minimum can provide such a black image.

- Click on Acquire Black Image. The flat field demo will grab a video frame, analyze the pixel gray level spread, and present the statistics. The desired black reference image should have pixel values less then 20. If acceptable, select the image as the black reference.
- Setup the camera to acquire a uniform white image (but not saturated white). Use even illumination on white paper or a diffused light aimed at the camera, to acquire an image with a gray level of 128 minimum. It is preferable to prepare for the white level calibration before the calibration procedure as described in this manual.
- Click on **Acquire White Image**. The flat field demo will grab a video frame, analyze the pixel gray level spread, and present the statistics. The captured gray level for all pixels should be greater than 128. If acceptable, select the image as the white reference.
- Click on **Save**. The flat field correction data is saved as a TIF image file with the name of your choice (such as camera name and serial number).

# **Using Flat Field Correction**

From the CamExpert menu bar, enable Flat Field correction (**Tools • Flat Field Correction • Enable**). Now when doing a live grab or snap, the incoming image is corrected by the current flat field calibration data for each pixel.

Use the menu function **Tools** • **Flat Field Correction** • **Load** to load in a flat field correction image from a previous saved calibration data. CamExpert allows saving and loading calibration data for all cameras used with the imaging system.

# Sapera Demo Applications

# Grab Demo Overview

| Program       | Start•Programs•DALSA•Sapera LT•Demos•Frame Grabbers•Grab Demo                                                                                                                                                                                                                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program file  | \DALSA\Sapera\Demos\Classes\vc\GrabDemo\Release\GrabDemo.exe                                                                                                                                                                                                                                     |
| Workspace     | \DALSA\Sapera\Demos\Classes\vc\SapDemos.dsw                                                                                                                                                                                                                                                      |
| .NET Solution | \DALSA\Sapera\Demos\Classes\vc\SapDemos_2003.sln<br>\DALSA\Sapera\Demos\Classes\vc\SapDemos_2005.sln<br>\DALSA\Sapera\Demos\Classes\vc\SapDemos_2008.sln                                                                                                                                         |
| Description   | This program demonstrates the basic acquisition functions included in the Sapera library. The program allows you to acquire images, either in continuous or in one-shot mode, while adjusting the acquisition parameters. The program code may be extracted for use within your own application. |
| Remarks       | This demo is built using Visual $C^{++}$ 6.0, and is based on Sapera $C^{++}$ classes. See the Sapera User's and Reference manuals for more information.                                                                                                                                         |

## Using the Grab Demo

### Server Selection

Run the grab demo from the start menu Start•Programs•Sapera LT•Demos•Grab Demo.

The demo program first displays the acquisition configuration menu. The first drop menu displayed permits selecting from any installed Sapera acquisition servers (installed DALSA acquisition hardware using Sapera drivers). The second drop menu permits selecting from the available input devices present on the selected server.

| Acquisition Configuration                                                                                          |                                                                                                 | ×      |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------|
| Location<br>Acquisition Server:<br>Xcelera-LVDS_PX4_1<br>Configuration File<br>DALSA, SP-1x-02K40 (Spyder), Free-r | Acquisition Device:<br>Digital Mono #1                                                          | Cancel |
| C:\DALSA\Sapera\CamFiles\User                                                                                      | aration file exists for your board/camera,<br>nExpert utility to generate your Configuration fi | Browse |

### **CCF File Selection**

Use the acquisition configuration menu to select the required camera configuration file for the connected camera. Sapera camera files contain timing parameters and video conditioning parameters. The default folder for camera configuration files is the same used by the CamExpert utility to save user generated or modified camera files.

Use the Sapera CamExpert utility program to generate the camera configuration file based on timing and control parameters entered. The CamExpert live acquisition window allows immediate verification of those parameters. CamExpert reads both Sapera \*.cca and \*.cvi for backward compatibility with the original Sapera camera files.

#### Grab Demo Main Window

The Grab Demo program provides basic acquisition control for the selected frame grabber. The loaded camera file (.ccf) defines the frame buffer parameters.



Refer to the Sapera LT User's Manual (OC-SAPM-USER), in section "Demos and Examples – Acquiring with Grab Demo", for more information on the Grab Demo.

# Flat-Field Demo Overview

| Program                                                                                 | Start•Programs•DALSA•Sapera LT•Demos•Frame Grabbers•Flat Field Demo                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program file         \DALSA\Sapera\Demos\Classes\vc\FlatFieldDemo\Release\FlatfieldDemo |                                                                                                                                                                                                                                                                                                                                                                                                           |
| Workspace                                                                               | \DALSA\Sapera\Demos\Classes\vc\SapDemos.dsw                                                                                                                                                                                                                                                                                                                                                               |
| Description                                                                             | This program demonstrates Flat Field or Flat Line processing, either performed by supporting DALSA hardware or performed on the host system via the Sapera library. The program allows you to acquire a flat field or flat line reference image, and then do real time correction either in continuous or single acquisition mode. The program code may be extracted for use within your own application. |
| Remarks                                                                                 | This demo is built using Visual C++ 6.0 and is based on Sapera C++ classes. See the Sapera User's and Reference manuals for more information.                                                                                                                                                                                                                                                             |

## Using the Flat Field Demo

Refer to the Sapera LT User's Manual (OC-SAPM-USER), in section "Using the Flat Field Demo", for more information.

# X64 Xcelera-LVDS PX4 Reference

# **Full Block Diagram**



# **Acquisition Timing**



<sup>1</sup> The setup times for DATA, LVAL and FVAL are the same. All signals must be high and stable before the rising edge of the Pixel Clock. Sampling can also be done on the falling edge of the Pixel Clock when selecting the appropriate firmware. <sup>2</sup> Pixel Clock must always be present. Data is sampled on rising edge (default firmware) or on falling edge (optional firmware). <sup>3</sup>LVAL must be active high to acquire camera data. <sup>4</sup> Minimum of 1. <sup>5</sup> HB - Horizontal Blanking: <sup>6</sup>VB - Vertical Blanking: 4 clock cycles Minimum: 1 line Minimum: Maximum: no limits Maximum: no limits <sup>7</sup> First Active Pixel (unless otherwise specified in the CCA file – "Horizontal Back invalid = x" where 'x' defines the number of pixels to be skipped). <sup>8</sup>Last Active Pixel – defined in the CCA file under "Horizontal active = y'' – where 'y' is the total number of active pixels per tap. <sup>9</sup> Maximum Valid Data: 8-bits/pixel x 256K Pixels/line (LVAL) 16-bits/pixel x 128K Pixels/line (LVAL) 32-bits/pixel x 64K Pixels/line (LVAL) 64-bits/pixel x 32K Pixels/line (LVAL) 16,000,000 lines (FVAL)

# Line Trigger Source Selection for Line Scan Applications

Line Scan imaging applications require some form of external event trigger to synchronize Line Scan camera exposures to the moving object. This synchronization signal is either an external trigger source (one exposure per trigger event) or a shaft encoder source composed of a single or dual phase (quadrature) signal. The X64 Xcelera-LVDS PX4 shaft encoder inputs provide additional functionality with pulse drop or pulse multiply support.

The following table describes the line trigger source types supported by the X64 Xcelera-LVDS PX4 Full. Refer to the Sapera Acquisition Parameters Reference Manual (OC-SAPM-APR00) for descriptions of the Sapera parameters.

## CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_SOURCE – Parameter Values Specific to the X64-CL series

| PRM Value | Active Shaft Encoder Input |  |  |
|-----------|----------------------------|--|--|
| 0         | Default                    |  |  |
| 1         | Use phase A                |  |  |
| 2         | Use phase B                |  |  |
| 3         | Use phase A & B            |  |  |

# CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_SOURCE full description relative to trigger type and X64 Xcelera-LVDS PX4 configuration used:

| PRM<br>Value | External Line Trigger<br>Signal used                | External Shaft Encoder<br>Signal used           |
|--------------|-----------------------------------------------------|-------------------------------------------------|
|              | if<br>CORACQ_PRM_EXT_LINE_<br>TRIGGER_ENABLE = true | if<br>CORACQ_PRM_SHAFT_<br>ENCODER_ENABLE =true |
| 0            | Shaft Encoder Phase A                               | Shaft Encoder Phase A & B                       |
| 1            | Shaft Encoder Phase A                               | Shaft Encoder Phase A                           |
| 2            | Shaft Encoder Phase B                               | Shaft Encoder Phase B                           |
| 3            | n/a                                                 | n/a – use parameter value = 0                   |

See "J3: External Signals Connector " on page 101 for shaft encoder input connector details.

### **CVI/CCF File Parameters Used**

- External Line Trigger Source = prm value
- External Line Trigger Enable = true/false
- Shaft Encoder Enable = true/false

# Shaft Encoder Interface Timing

### Connector J3, Dual Balanced Shaft Encoder Inputs:

- Input 1: Pin 23 (Phase A +) & Pin 24 (Phase A -) (see "J3: External Signals Connector " on page 101 for complete connector signal details)
- Input 2: Pin 25 (Phase B +) & Pin 26 (Phase B -)
- See "External Signals Connector Bracket Assembly" on page 107 for pinout information about the DB37 used for external connections.

Web inspection systems with variable web speeds typically provide one or two synchronization signals from a web mounted encoder to coordinate trigger signals. These trigger signals are used by the acquisition Line Scan camera. The X64 Xcelera-LVDS PX4 supports single or dual shaft encoder signals. Dual encoder signals are typically 90 degrees out of phase relative to each other and provide greater web motion resolution.

When enabled, the camera is triggered and acquires one scan line for each shaft encoder pulse edge. To optimize the web application, a second Sapera parameter defines the number of triggers to skip between valid acquisition triggers. The figure below depicts a system where a valid camera trigger is any pulse edge from either shaft encoder signal. After a trigger the two following triggers are ignored (as defined by the Sapera pulse drop parameter).



Note that camera file parameters are best modified by using the Sapera CamExpert program.

### **CVI/CCF File Parameters Used**

**Shaft Encoder Enable** = X, where:

- If X = 1, Shaft Encoder is enabled
- If X = 0, Shaft Encoder is disabled

### **Shaft Encoder Pulse Drop** = X, where:

• X = number of trigger pulses ignored between valid triggers

For information on camera configuration files see the Sapera Acquisition Parameters Reference Manual (OC-SAPM-APR00).

# Virtual Frame\_Reset for Line Scan Cameras

When using Line Scan cameras a frame buffer is allocated in host system memory to store captured video lines. To control when a video line is stored as the first line in this "virtual" frame buffer, an external frame trigger signal called **FRAME\_RESET** is used. The number of lines sequentially grabbed and stored in the virtual frame buffer is controlled by the Sapera vertical cropping parameter.

### Virtual Frame\_Reset Timing Diagram

The following timing diagram shows an example of grabbing 10 video lines from a Line Scan camera and the use of **FRAME\_RESET** to define when a video line is stored at the beginning of the virtual frame buffer. The **FRAME\_RESET** signal (generated by some external event) is input on the X64 Xcelera-LVDS PX4 trigger input.

- FRAME\_RESET can be TTL or RS-422 and be rising or falling edge active.
- **FRAME\_RESET** control is configured for rising edge trigger in this example.
- FRAME\_RESET connects to the X64 Xcelera-LVDS PX4 via the Trigger In 1 balanced inputs on connector J3 pin 11 (+) and 12 (-).
- After the X64 Xcelera-LVDS PX4 receives **FRAME\_RESET**, the **EXSYNC** control signal is output to the camera to trigger n lines of video as per the defined virtual frame size.
- The **EXSYNC** control signal is either based on timing controls input on one or both X64 Xcelera-LVDS PX4 shaft encoder inputs (see "J3: External Signals Connector" on page 101 pinout) or an internal X64 Xcelera-LVDS PX4 clock.
- The number of lines captured is specified by the Sapera vertical cropping parameter.

### Synchronization Signals for a Virtual Frame of 10 Lines.

The following timing diagram shows the relationship between external Frame\_Reset input, external Shaft Encoder input (one phase used with the second terminated), and EXSYNC out to the camera.



### CVI File (VIC) Parameters Used

The VIC parameters listed below provide the control functionality for virtual frame reset. Applications either load pre-configured .cvi files or change VIC parameters directly during runtime.

Note that camera file parameters are best modified by using the Sapera CamExpert program.

**External Frame Trigger Enable** = X, where:

\\Virtual Frame\_Reset enabled

- If X = 1, External Frame Trigger is enabled
- If X = 0, External Frame Trigger is disabled

**External Frame Trigger Detection** = Y, where:

= Y, where:  $\land$  Frame\_Reset edge select

- If Y= 4, External Frame Trigger is active on rising edge
- If Y= 8, External Frame Trigger is active on falling edge

External Frame Trigger Level = Z, where:

\\ Frame Reset signal type

• If Z= 2, External Frame Trigger is a RS-422 signal

For information on camera files see the Sapera Acquisition Parameters Reference Manual (OC-SAPM-APR00).

# **Acquisition Methods**

Sapera acquisition methods define the control and timing of the camera and frame grabber board. Various methods are available, grouped as:

- Camera Trigger Methods (method 1 and 2 supported)
- Camera Reset Methods (method 1 supported)
- Line Integration Methods (method 1 through 4 supported)
- Time Integration Methods (method 1 through 8 supported)
- Strobe Methods (method 1 through 4 supported)

Refer to the Sapera LT Acquisition Parameters Reference manual (OC-SAPM-APR00) for detailed information concerning camera and acquisition control methods.

# **Supported Events**

The following acquisition and transfer events are supported. Event monitoring is a major component to the Trigger-to-Image Reliability framework.

### **Acquisition Events**

Acquisition events are related to the acquisition module. They provide feedback on the image capture phase.

• External Trigger (Used/Ignored)

Generated when the external trigger pin is asserted, usually indicating the start of the acquisition process. There are 2 types of external trigger events: 'Used' or 'Ignored'. Following an external trigger, if the event generates a captured image, an External Trigger Used event will be generated (CORACQ\_VAL\_EVENT\_TYPE\_EXTERNAL\_TRIGGER). If there is no captured image, an External Trigger Ignored event will be generated (CORACQ\_VAL\_EVENT\_TYPE\_EXTERNAL\_TRIGGER\_IGNORED). An external trigger event will be ignored if the rate at which the events are received are higher than the possible frame rate of the camera.

• Start of Frame

Event generated, during acquisition, when the connected sensor video frame start is detected by the board acquisition hardware. The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_START\_OF\_FRAME.

### • End of Frame

Event generated, during acquisition, when the connected sensor video frame end is detected by the board acquisition hardware. The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_END\_OF\_FRAME.

### • Data Overflow

The Data Overflow event indicates that there is not enough bandwidth for the acquired data to be transferred without loss. This is usually caused by limitations of the acquisition module and should never occur.

The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_DATA\_OVERFLOW.

#### • Frame Valid

Event generated when the connected sensor video frame start is detected by the board acquisition hardware. Acquisition does not need to be started; therefore, this event can verify a valid signal is connected. The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_VERTICAL\_SYNC.

#### • Pixel Clock (Present/Absent)

Event generated on the transition from detecting or not detecting a pixel clock signal. The Sapera event values are CORACQ\_VAL\_EVENT\_TYPE\_NO\_PIXEL\_CLK and CORACQ\_VAL\_EVENT\_TYPE\_PIXEL\_CLK.

• Frame Lost

The Frame Lost event indicates that an acquired image transfer to on-board memory failed. An example of this case would be if there are no free on-board buffers available for the new image. This may be the case if the image transfer from onboard buffers to host PC memory is not sustainable due to bus bandwidth issues.

The Sapera event value is CORACQ\_VAL\_EVENT\_TYPE\_FRAME\_LOST.

### • Vertical Timeout

This event indicates a timeout situation where a camera fails to output a video frame after a trigger. The Sapera event value is CORACQ\_VAL\_EVENT\_VERTICAL\_TIMEOUT.

### **Transfer Events**

Transfer events are the ones related to the transfer module. Transfer events provide feedback on image transfer from onboard memory frame buffers to PC memory frame buffers.

• Start of Frame

The Start of Frame event is generated when the first image pixel is transferred from onboard memory into PC memory.

The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_START\_OF\_FRAME.

• End of Frame

The End of Frame event is generated when the last image pixel is transferred from onboard memory into PC memory.

The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_END\_OF\_FRAME.

• End of Line

The End of Line event is generated after a video line is transferred to a PC buffer. The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_END\_OF\_LINE.

• End of N Lines

The End of N Lines event is generated after a set number of video lines are transferred to a PC buffer. The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_END\_OF\_NLINES.

• End of Transfer

The End of Transfer event is generated at the completion of the last image being transferred from onboard memory into PC memory. To complete a transfer, a stop must be issued to the transfer module (if transfers are already in progress). If a transfer of a fixed number of frames was requested, the transfer module will stop transfers automatically. The Sapera event value is CORXFER\_VAL\_EVENT\_TYPE\_END\_OF\_TRANSFER.

# LUT Availability

| Input Pixel Format<br>(Bits) | Bits per Pixel<br>(frame buffer format) | LUT Supported | Maximum TAPS<br>Available with LUT |
|------------------------------|-----------------------------------------|---------------|------------------------------------|
| 8                            | 8 (mono-8)                              | Y             | 8                                  |
| 10                           | 10 (mono-16)                            | Y             | 4                                  |
| 10                           | 8 (mono-8)                              | Y             | 4                                  |
| 12                           | 12 (mono-16)                            | Y             | 4                                  |
| 12                           | 8 (mono-8)                              | Y             | 4                                  |
| 14                           | 14 (mono-16)                            | Ν             | -                                  |
| 16                           | 16 (mono-16)                            | Ν             | -                                  |
|                              |                                         |               |                                    |
| RGB 8                        | 8 (RGB-8888)                            | Y             | 1                                  |
| RGB 10                       | 10 (RGB-101010)                         | Y             | 1                                  |
| RGB 10                       | 8 (RGB-8888)                            | Y             | 1                                  |
| RGB 12                       | 12 (RGB-16161616)                       | Y             | 1                                  |

The following table defines the X64 Xcelera-LVDS PX4 Output LUT availability.

# X64 Xcelera-LVDS PX4 Supported Parameters

The tables below describe the Sapera capabilities supported by the X64 Xcelera-LVDS PX4 (i.e. default firmware is loaded), where acquisition device (0) is the monochrome, and acquisition device (1) is the color RGB.

The information here is subject to change. Capabilities should be verified by the application because new board driver releases may change product specifications.

Specifically the X64 Xcelera-LVDS PX4 family is described in Sapera as:

- Board Server: Xcelera-LVDS\_PX4\_1
- Acquisition modules available are (select one or the other):
  - Acquisition Device (0) Digital Monochrome Acquisition Device (1) Digital Color RGB

### **Camera Related Capabilities**

| Capability                                  | Values                                                                                                                                                        |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_CAP_CONNECTOR_TYPE                   | CORACQ_VAL_CONNECTOR_TYPE_CAM_CONTROL (0x4)                                                                                                                   |
| CORACQ_CAP_CONNECTOR_CAM_CONTROL (Pin – 01) | CORACQ_VAL_SIGNAL_NAME_NO_CONNECT (0x1)<br>CORACQ_VAL_SIGNAL_NAME_PULSE0 (0x8)<br>CORACQ_VAL_SIGNAL_NAME_PULSE1 (0x10)<br>CORACQ_VAL_SIGNAL_NAME_GND (0x4000) |
| CORACQ_CAP_CONNECTOR_CAM_CONTROL (Pin – 02) | CORACQ_VAL_SIGNAL_NAME_NO_CONNECT (0x1)<br>CORACQ_VAL_SIGNAL_NAME_PULSE0 (0x8)<br>CORACQ_VAL_SIGNAL_NAME_PULSE1 (0x10)<br>CORACQ_VAL_SIGNAL_NAME_GND (0x4000) |

# **Camera Related Parameters**

| Parameter                 |                         | Values                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_CHANNEL        | monochrome and RGB      | CORACQ_VAL_CHANNEL_SINGLE (0x1)                                                                                                                                                                                                                                                                                                                                                                                |
|                           | monochrome              | CORACQ_VAL_CHANNEL_DUAL (0x2)                                                                                                                                                                                                                                                                                                                                                                                  |
| CORACQ_PRM_FRAME          |                         | CORACQ_VAL_FRAME_PROGRESSIVE (0x2)                                                                                                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_INTERFACE      |                         | CORACQ_VAL_INTERFACE_DIGITAL (0x2)                                                                                                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_SCAN           |                         | CORACQ_VAL_SCAN_AREA (0x1)<br>CORACQ_VAL_SCAN_LINE (0x2)                                                                                                                                                                                                                                                                                                                                                       |
| CORACQ_PRM_SIGNAL         |                         | CORACQ_VAL_SIGNAL_DIFFERENTIAL (0x2)                                                                                                                                                                                                                                                                                                                                                                           |
| CORACQ_PRM_VIDEO          |                         | CORACQ_VAL_VIDEO_MONO (0x1)<br>CORACQ_VAL_VIDEO_RGB (0x8)                                                                                                                                                                                                                                                                                                                                                      |
| CORACQ_PRM_PIXEL_DEPTH    | digital monochrome mode | 8 bits, # LUT = 1, LUT format = CORDATA_FORMAT_MONO8<br>10 bits, # LUT = 1, LUT format = CORDATA_FORMAT_MONO10<br>10 bits, # LUT = 1, LUT format = CORDATA_FORMAT_MONO8<br>12 bits, # LUT = 1, LUT format = CORDATA_FORMAT_MONO12<br>12 bits, # LUT = 1, LUT format = CORDATA_FORMAT_MONO8<br>14 bits, # LUT = 0, LUT format = CORDATA_FORMAT_MONO14<br>16 bits, # LUT = 0, LUT format = CORDATA_FORMAT_MONO16 |
|                           | digital color RGB mode  | 8 bits, # LUT = 1, LUT format = CORDATA_FORMAT_COLORNI8<br>10 bits, # LUT = 1, LUT format = CORDATA_FORMAT_COLORNI10<br>12 bits, # LUT = 1, LUT format = CORDATA_FORMAT_COLORNI10                                                                                                                                                                                                                              |
| CORACQ_PRM_VIDEO_STD      |                         | CORACQ_VAL_VIDEO_STD_NON_STD (0x1)                                                                                                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_FIELD_ORDER    |                         | CORACQ_VAL_FIELD_ORDER_NEXT_FIELD (0x4)                                                                                                                                                                                                                                                                                                                                                                        |
| CORACQ_PRM_HACTIVE        |                         | min = 1 pixel, max = 16777215 pixel, step = 1 pixel                                                                                                                                                                                                                                                                                                                                                            |
| CORACQ_PRM_HSYNC          |                         | min = 4 pixel, max = 4294967295 pixel, step = 1 pixel                                                                                                                                                                                                                                                                                                                                                          |
| CORACQ_PRM_VACTIVE        |                         | min = 1 line, $max = 16777215$ line, step = 1 line                                                                                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_VSYNC          |                         | min = 0 line, max = 4294967295 line, step = 1 line                                                                                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_HFRONT_PORCH   |                         | min = 0 pixel, $max = 0$ pixel, $step = 1$ pixel                                                                                                                                                                                                                                                                                                                                                               |
| CORACQ_PRM_HBACK_PORCH    |                         | min = 0 pixel, $max = 0$ pixel, $step = 1$ pixel                                                                                                                                                                                                                                                                                                                                                               |
| CORACQ_PRM_VFRONT_PORCH   |                         | min = 0 line, $max = 0$ line, $step = 1$ line                                                                                                                                                                                                                                                                                                                                                                  |
| CORACQ_PRM_VBACK_PORCH    |                         | min = 0 line, $max = 0$ line, $step = 1$ line                                                                                                                                                                                                                                                                                                                                                                  |
| CORACQ_PRM_HFRONT_INVALID |                         | min = 0 pixel, max = 16777215 pixel, step = 1 pixel                                                                                                                                                                                                                                                                                                                                                            |
| CORACQ_PRM_HBACK_INVALID  |                         | min = 0 pixel, max = 16777215 pixel, step = 1 pixel                                                                                                                                                                                                                                                                                                                                                            |
| CORACQ_PRM_VFRONT_INVALID |                         | min = 0 line, $max = 16777215$ line, step = 1 line                                                                                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_VBACK_INVALID  |                         | min = 0 line, $max = 16777215$ line, step = 1 line                                                                                                                                                                                                                                                                                                                                                             |
| CORACQ_PRM_PIXEL_CLK_SRC  |                         | CORACQ_VAL_PIXEL_CLK_SRC_EXT (0x2)<br>CORACQ_VAL_PIXEL_CLK_SRC_EXT_INT (0x4)                                                                                                                                                                                                                                                                                                                                   |
| CORACQ_PRM_PIXEL_CLK_INT  |                         | min = 1 Hz, max = 85000000 Hz, step = 1 Hz                                                                                                                                                                                                                                                                                                                                                                     |
| CORACQ_PRM_PIXEL_CLK_11   |                         | 20000000 Hz                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_PIXEL_CLK_EXT  |                         | min = 1 Hz, max = 85000000 Hz, step = 1 Hz                                                                                                                                                                                                                                                                                                                                                                     |
| CORACQ_PRM_SYNC           |                         | CORACQ_VAL_SYNC_SEP_SYNC (0x4)                                                                                                                                                                                                                                                                                                                                                                                 |
| CORACQ_PRM_HSYNC_POLARITY |                         | CORACQ_VAL_ACTIVE_LOW (0x1)                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_VSYNC_POLARITY |                         | CORACQ_VAL_ACTIVE_LOW (0x1)                                                                                                                                                                                                                                                                                                                                                                                    |
| CORACQ_PRM_DETECT_HACTIVE |                         | 0 active pixel per line                                                                                                                                                                                                                                                                                                                                                                                        |

70 • X64 Xcelera-LVDS PX4 Reference
| CORACQ_PRM_DETECT_VACTIVE        | 0 lines per field                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_TIME_INTEGRATE_METHOD | CORACQ_VAL_TIME_INTEGRATE_METHOD_1 (0x1)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_2 (0x2)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_3 (0x4)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_4 (0x8)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_5 (0x10)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_6 (0x20)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_7 (0x40)<br>CORACQ_VAL_TIME_INTEGRATE_METHOD_8 (0x80) |
| CORACQ_PRM_CAM_TRIGGER_METHOD    | CORACQ_VAL_CAM_TRIGGER_METHOD_1 (0x1)<br>CORACQ_VAL_CAM_TRIGGER_METHOD_2 (0x2)                                                                                                                                                                                                                                                                                   |
| CORACQ_PRM_CAM_TRIGGER_POLARITY  | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                                                                                                      |
| CORACQ_PRM_CAM_TRIGGER_DURATION  | min = 1 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                                                                                                                                                        |
| CORACQ_PRM_CAM_RESET_METHOD      | CORACQ_VAL_CAM_RESET_METHOD_1 (0x1)                                                                                                                                                                                                                                                                                                                              |
| CORACQ_PRM_CAM_RESET_POLARITY    | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                                                                                                      |
| CORACQ_PRM_CAM_RESET_DURATION    | min = 1 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                                                                                                                                                        |
| CORACQ_PRM_CAM_NAME              | Default Area Scan                                                                                                                                                                                                                                                                                                                                                |
| CORACQ_PRM_LINE_INTEGRATE_METHOD | CORACQ_VAL_LINE_INTEGRATE_METHOD_1 (0x1)<br>CORACQ_VAL_LINE_INTEGRATE_METHOD_2 (0x2)<br>CORACQ_VAL_LINE_INTEGRATE_METHOD_3 (0x4)<br>CORACQ_VAL_LINE_INTEGRATE_METHOD_4 (0x8)<br>CORACQ_VAL_LINE_INTEGRATE_METHOD_7 (0x40)                                                                                                                                        |
| CORACQ_PRM_LINE_TRIGGER_METHOD   | CORACQ_VAL_LINE_TRIGGER_METHOD_1 (0x1)                                                                                                                                                                                                                                                                                                                           |
| CORACQ_PRM_LINE_TRIGGER_POLARITY | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                                                                                                      |
| CORACQ_PRM_LINE_TRIGGER_DELAY    | min = $0 \ \mu s$ , max = $65535 \ \mu s$ , step = $1 \ \mu s$                                                                                                                                                                                                                                                                                                   |
| CORACQ_PRM_LINE_TRIGGER_DURATION | min = $0 \ \mu s$ , max = $65535 \ \mu s$ , step = $1 \ \mu s$                                                                                                                                                                                                                                                                                                   |
| CORACQ_PRM_TAPS monochrome       | min = 1 tap, max = 16 tap, step = 1 tap                                                                                                                                                                                                                                                                                                                          |
| color RGE                        | min = 1 tap, $max = 4$ tap, $step = 1$ tap                                                                                                                                                                                                                                                                                                                       |
| CORACQ_PRM_TAP_OUTPUT            | CORACQ_VAL_TAP_OUTPUT_ALTERNATE (0x1)<br>CORACQ_VAL_TAP_OUTPUT_SEGMENTED (0x2)<br>CORACQ_VAL_TAP_OUTPUT_PARALLEL (0x4)                                                                                                                                                                                                                                           |
| CORACQ_PRM_TAP_1_DIRECTION       | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40)                                                                             |
| CORACQ_PRM_TAP_2_DIRECTION       | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_DD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40)                                                                             |
| CORACQ_PRM_TAP_3_DIRECTION       | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40)                                                                             |

| CORACQ_PRM_TAP_4_DIRECTION                 |           | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
|--------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_TAP_5_DIRECTION monochro        | ome only  | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
| CORACQ_PRM_TAP_6_DIRECTION monochro        | ome only  | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
| CORACQ_PRM_TAP_7_DIRECTION monochro        | come only | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
| CORACQ_PRM_TAP_8_DIRECTION monochro        | ome only  | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
| CORACQ_PRM_PIXEL_CLK_DETECTION             |           | CORACQ_VAL_RISING_EDGE (0x4)<br>CORACQ_VAL_FALLING_EDGE (0x8)<br>* Value set has no effect on the board. Selection of the pixel clock<br>detection is done by using the appropriate firmware configuration.                                                                          |
| CORACQ_PRM_CHANNELS_ORDER                  |           | CORACQ_VAL_CHANNELS_ORDER_NORMAL (0x1)<br>CORACQ_VAL_CHANNELS_ORDER_REVERSE (0x2)                                                                                                                                                                                                    |
| CORACQ PRM LINESCAN DIRECTION              |           | Default = 1                                                                                                                                                                                                                                                                          |
| CORACQ_PRM_LINESCAN_DIRECTION_POLARITY     |           | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                          |
| CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN       |           | 1 Hz                                                                                                                                                                                                                                                                                 |
| CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX       |           | 16777215 Hz                                                                                                                                                                                                                                                                          |
| CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN |           | 1 μs                                                                                                                                                                                                                                                                                 |
| CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX |           | 65535000 μs                                                                                                                                                                                                                                                                          |
| CORACQ_PRM_CONNECTOR_HD_INPUT (*)          |           | Default = 0                                                                                                                                                                                                                                                                          |
| CORACQ_PRM_CONNECTOR_VD_INPUT (*)          |           | Default = 0                                                                                                                                                                                                                                                                          |
| CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT ( | (*)       | Default = 0                                                                                                                                                                                                                                                                          |
| CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY  |           | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                          |
| CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY     |           | min = 0 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                                                                            |
| CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION  |           | min = 0 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                                                                            |

| CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT (*)           | Default = 0                                                                                                                                                                                                                                                                          |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY         | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                          |  |
| CORACQ_PRM_TIME_INTEGRATE_PULSE0_DELAY            | min = $0 \ \mu s$ , max = $65535000 \ \mu s$ , step = $1 \ \mu s$                                                                                                                                                                                                                    |  |
| CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION         | min = 1 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                                                                            |  |
| CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY         | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                          |  |
| CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY            | min = 0 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                                                                            |  |
| CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION         | min = 1 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                                                                            |  |
| CORACQ_PRM_LINE_INTEGRATE_PULSE0_POLARITY         | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                          |  |
| CORACQ_PRM_LINE_INTEGRATE_PULSE0_DELAY            | min = $0 \mu s$ , max = $65535 \mu s$ , step = $1 \mu s$                                                                                                                                                                                                                             |  |
| CORACQ_PRM_LINE_INTEGRATE_PULSE0_DURATION         | min = 1 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                                                                            |  |
| CORACQ_PRM_VIDEO_LEVEL_MIN                        | Default = 0 $\mu$ V                                                                                                                                                                                                                                                                  |  |
| CORACQ_PRM_VIDEO_LEVEL_MAX                        | $Default = 0 \ \mu V$                                                                                                                                                                                                                                                                |  |
| CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT (*)       | Default = 0                                                                                                                                                                                                                                                                          |  |
| CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT (*)     | Connector #1, type 2, pin #1                                                                                                                                                                                                                                                         |  |
| CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPUT (*) | Default = 0                                                                                                                                                                                                                                                                          |  |
| CORACQ_PRM_DATA_VALID_ENABLE                      | TRUE<br>FALSE                                                                                                                                                                                                                                                                        |  |
| CORACQ_PRM_DATA_VALID_POLARITY                    | CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                                                                                                                         |  |
| CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT (*)         | Default = 0                                                                                                                                                                                                                                                                          |  |
| CORACQ_PRM_CONNECTOR_WEN_OUTPUT (*)               | Default = 0                                                                                                                                                                                                                                                                          |  |
| CORACQ_PRM_TAP_9_DIRECTION monochrome only        | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |  |
| CORACQ_PRM_TAP_10_DIRECTION monochrome only       | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |  |
| CORACQ_PRM_TAP_11_DIRECTION monochrome only       | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |  |
| CORACQ_PRM_TAP_12_DIRECTION monochrome only       | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |  |

| CORACQ_PRM_TAP_13_DIRECTION     | monochrome only | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
|---------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_TAP_14_DIRECTION     | monochrome only | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
| CORACQ_PRM_TAP_15_DIRECTION     | monochrome only | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
| CORACQ_PRM_TAP_16_DIRECTION     | monochrome only | CORACQ_VAL_TAP_DIRECTION_LR (0x1)<br>CORACQ_VAL_TAP_DIRECTION_RL (0x2)<br>CORACQ_VAL_TAP_DIRECTION_UD (0x4)<br>CORACQ_VAL_TAP_DIRECTION_DU (0x8)<br>CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x10)<br>CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x20)<br>CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x40) |
| CORACQ_PRM_TIMESLOT             |                 | CORACQ_VAL_TIMESLOT_1 (0x1)<br>CORACQ_VAL_TIMESLOT_2 (0x2)                                                                                                                                                                                                                           |
| CORACQ_PRM_CAM_CONTROL_DURING_R | EADOUT          | TRUE<br>FALSE                                                                                                                                                                                                                                                                        |
| CORACQ_PRM_CAMERA_POWER         |                 | CORACQ_VAL_CAMERA_POWER_EXTERNAL (0x1)                                                                                                                                                                                                                                               |

## **VIC Related Parameters**

| Parameter                  | Values                                                                                                         |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_CAMSEL          | CAMSEL_MONO = from 0 to 0<br>CAMSEL_COLOR not available<br>CAMSEL_YC not available<br>CAMSEL_RGB = from 0 to 0 |
| CORACQ_PRM_DC_REST_MODE    | CORACQ_VAL_DC_REST_MODE_AUTO (0x1)                                                                             |
| CORACQ_PRM_CROP_LEFT       | min = 0 pixel, max = 16777215 pixel, step = 16 pixel                                                           |
| CORACQ_PRM_CROP_TOP        | min = 0 line, $max = 16777215$ line, step = 1 line                                                             |
| CORACQ_PRM_CROP_WIDTH      | min = 16 pixel, max = 16777215 pixel, step = 16 pixel                                                          |
| CORACQ_PRM_CROP_HEIGHT     | min = 1 line, $max = 16777215$ line, step = 1 line                                                             |
| CORACQ_PRM_DECIMATE_METHOD | CORACQ_VAL_DECIMATE_DISABLE (0x1)                                                                              |
| CORACQ_PRM_DECIMATE_COUNT  | Default = 0                                                                                                    |
| CORACQ_PRM_LUT_ENABLE      | TRUE<br>FALSE                                                                                                  |
| CORACQ_PRM_LUT_NUMBER      | Default = 0                                                                                                    |

| CORACQ_PRM_STROBE_ENABLE               |                 | TRUE<br>FALSE                                                                                                                                                                                                             |
|----------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_STROBE_METHOD               |                 | CORACQ_VAL_STROBE_METHOD_1 (0x1)<br>CORACQ_VAL_STROBE_METHOD_2 (0x2)<br>CORACQ_VAL_STROBE_METHOD_3 (0x4)<br>CORACQ_VAL_STROBE_METHOD_4 (0x8)                                                                              |
| CORACQ_PRM_STROBE_POLARITY             |                 | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)                                                                                                                                                               |
| CORACQ_PRM_STROBE_DURATION             |                 | min = $0 \ \mu s$ , max = $65535000 \ \mu s$ , step = $1 \ \mu s$                                                                                                                                                         |
| CORACQ_PRM_STROBE_DELAY                |                 | min = $0 \ \mu s$ , max = $65535000 \ \mu s$ , step = $1 \ \mu s$                                                                                                                                                         |
| CORACQ_PRM_TIME_INTEGRATE_ENABLE       |                 | TRUE<br>FALSE                                                                                                                                                                                                             |
| CORACQ_PRM_TIME_INTEGRATE_DURATION     |                 | min = 1 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                                                                                                                                                                 |
| CORACQ_PRM_CAM_TRIGGER_ENABLE          |                 | TRUE<br>FALSE                                                                                                                                                                                                             |
| CORACQ_PRM_CAM_RESET_ENABLE            |                 | TRUE<br>FALSE                                                                                                                                                                                                             |
| CORACQ_PRM_OUTPUT_FORMAT               | monochrome mode | CORACQ_VAL_OUTPUT_FORMAT_MONO8<br>CORACQ_VAL_OUTPUT_FORMAT_MONO16                                                                                                                                                         |
|                                        | color RGB mode  | CORACQ_VAL_OUTPUT_FORMAT_RGB8888<br>CORACQ_VAL_OUTPUT_FORMAT_RGBP8<br>CORACQ_VAL_OUTPUT_FORMAT_RGBP16                                                                                                                     |
| CORACQ_PRM_EXT_TRIGGER_ENABLE          |                 | CORACQ_VAL_EXT_TRIGGER_OFF (0x1)<br>CORACQ_VAL_EXT_TRIGGER_ON (0x8)                                                                                                                                                       |
| CORACQ_PRM_VIC_NAME                    |                 | Default Area Scan                                                                                                                                                                                                         |
| CORACQ_PRM_LUT_MAX                     |                 | 1                                                                                                                                                                                                                         |
| CORACQ_PRM_EXT_TRIGGER_DETECTION       |                 | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)<br>CORACQ_VAL_RISING_EDGE (0x4)<br>CORACQ_VAL_FALLING_EDGE (0x8)                                                                                              |
| CORACQ_PRM_DC_REST_START               |                 | min = 0 pixel, $max = 0$ pixel, $step = 1$ pixel                                                                                                                                                                          |
| CORACQ_PRM_DC_REST_WIDTH               |                 | min = 0 pixel, $max = 0$ pixel, $step = 1$ pixel                                                                                                                                                                          |
| CORACQ_PRM_LUT_FORMAT                  | monochrome mode | Default = CORACQ_VAL_OUTPUT_FORMAT_MONO8                                                                                                                                                                                  |
|                                        | color RGB mode  | Default = CORACQ_VAL_OUTPUT_FORMAT_RGBP16                                                                                                                                                                                 |
| CORACQ_PRM_VSYNC_REF                   |                 | CORACQ_VAL_SYNC_REF_END (0x2)                                                                                                                                                                                             |
| CORACQ_PRM_HSYNC_REF                   |                 | CORACQ_VAL_SYNC_REF_END (0x2)                                                                                                                                                                                             |
| CORACQ_PRM_LINE_INTEGRATE_ENABLE       |                 | TRUE<br>FALSE                                                                                                                                                                                                             |
| CORACQ_PRM_LINE_INTEGRATE_DURATION     |                 | min = 1 pixel, max = 16777215 pixel, step = 1 pixel                                                                                                                                                                       |
| CORACQ_PRM_LINE_TRIGGER_ENABLE         |                 | TRUE<br>FALSE                                                                                                                                                                                                             |
| CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE    |                 | TRUE<br>FALSE                                                                                                                                                                                                             |
| CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION | N               | CORACQ_VAL_ACTIVE_LOW (0x1)<br>CORACQ_VAL_ACTIVE_HIGH (0x2)<br>CORACQ_VAL_RISING_EDGE (0x4)<br>CORACQ_VAL_FALLING_EDGE (0x8)<br>CORACQ_VAL_DOUBLE_PULSE_RISING_EDGE (0x20)<br>CORACQ_VAL_DOUBLE_PULSE_FALLING_EDGE (0x40) |
| CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE     |                 | TRUE<br>FALSE                                                                                                                                                                                                             |

| CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION    | CORACQ_VAL_RISING_EDGE (0x4)                                                |  |
|------------------------------------------|-----------------------------------------------------------------------------|--|
| CORACQ_PRM_SNAP_COUNT                    | Default = 1 frame                                                           |  |
| CORACQ_PRM_INT_LINE_TRIGGER_ENABLE       | TRUE<br>FALSE                                                               |  |
| CORACQ_PRM_INT_LINE_TRIGGER_FREQ         | Default = 5000 Hz                                                           |  |
| CORACQ_PRM_LINESCAN_DIRECTION_OUTPUT (*) | CORACQ_VAL_LINESCAN_DIRECTION_FORWARD (0x1)                                 |  |
| CORACQ_PRM_BIT_ORDERING                  | CORACQ_VAL_BIT_ORDERING_STD (0x1)                                           |  |
| CORACQ_PRM_EXT_TRIGGER_LEVEL             | CORACQ_VAL_LEVEL_TTL (0x1)<br>CORACQ_VAL_LEVEL_422 (0x2)                    |  |
| CORACQ_PRM_STROBE_LEVEL                  | CORACQ_VAL_LEVEL_TTL (0x1)                                                  |  |
| CORACQ_PRM_EXT_FRAME_TRIGGER_LEVEL       | CORACQ_VAL_LEVEL_TTL (0x1)<br>CORACQ_VAL_LEVEL_422 (0x2)                    |  |
| CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL        | CORACQ_VAL_LEVEL_422 (0x2)                                                  |  |
| CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MIN     | 245 Hz                                                                      |  |
| CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX     | 500000 Hz                                                                   |  |
| CORACQ_PRM_MASTER_MODE_HSYNC_POLARITY    | CORACQ_VAL_ACTIVE_LOW (0x1)                                                 |  |
| CORACQ_PRM_MASTER_MODE_VSYNC_POLARITY    | CORACQ_VAL_ACTIVE_LOW (0x1)                                                 |  |
| CORACQ_PRM_SHAFT_ENCODER_DROP            | min = 0 tick, $max = 255$ tick, step = 1 tick                               |  |
| CORACQ_PRM_SHAFT_ENCODER_ENABLE          | TRUE<br>FALSE                                                               |  |
| CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT       | Default = 1 frame                                                           |  |
| CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE      | TRUE<br>FALSE                                                               |  |
| CORACQ_PRM_INT_FRAME_TRIGGER_FREQ        | min = 1 milli-Hz, max = 1073741823 milli-Hz, step = 1 milli-Hz              |  |
| CORACQ_PRM_STROBE_DELAY_2                | min = 0 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                   |  |
| CORACQ_PRM_FRAME_LENGTH                  | CORACQ_VAL_FRAME_LENGTH_FIX (0x1)<br>CORACQ_VAL_FRAME_LENGTH_VARIABLE (0x2) |  |
| CORACQ_PRM_SHARPNESS                     | $\min = 0, \max = 0, \operatorname{step} = 1$                               |  |
| CORACQ_PRM_EXT_TRIGGER_DURATION          | min = 0 $\mu$ s, max = 65535 $\mu$ s, step = 1 $\mu$ s                      |  |
| CORACQ_PRM_TIME_INTEGRATE_DELAY          | min = 0 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                   |  |
| CORACQ_PRM_CAM_RESET_DELAY               | min = 0 $\mu$ s, max = 0 $\mu$ s, step = 1 $\mu$ s                          |  |
| CORACQ_PRM_CAM_TRIGGER_DELAY             | min = 0 $\mu$ s, max = 65535000 $\mu$ s, step = 1 $\mu$ s                   |  |
| CORACQ_PRM_SHAFT_ENCODER_LEVEL           | CORACQ_VAL_LEVEL_422 (0x2)                                                  |  |
| CORACQ_PRM_LUT_NENTRIES                  | 256 entries                                                                 |  |
| CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE (*)  | $\min = 0, \max = 5, \text{step} = 1$                                       |  |
| CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE (*)   | min = 0, max = 7, step = 1                                                  |  |
| CORACQ_PRM_EXT_TRIGGER_SOURCE (*)        | $\min = 0, \max = 5, \text{step} = 1$                                       |  |
| CORACQ_PRM_SHAFT_ENCODER_MULTIPLY        | $\min = 1, \max = 32, \text{step} = (2^{**}N)$                              |  |
| CORACQ_PRM_CAM_TRIGGER_DELAY             | $\min = 0, \max = 65535, \text{step} = 1$                                   |  |
| CORACQ_PRM_EXT_TRIGGER_DELAY_TIME_BASE   | CORACQ_VAL_TIME_BASE_LINE (0x4)                                             |  |
| CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY      | min = 0 $max = 65535000$ $step = 1$                                         |  |

| CORACQ_PRM_EXT_TRIGGER_SOURCE_STR      | <ul> <li>[0] = Automatic</li> <li>[1] = From Trigg in #1</li> <li>[2] = From Trigg in #2</li> <li>[3] = From Board Sync</li> <li>[4] = To Board Sync</li> <li>[5] = Pulse to Board Sync</li> </ul>                                                                                                                  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE_STR | <ul> <li>[0] = Automatic</li> <li>[1] = From Shaft Encoder Phase A</li> <li>[2] = From Shaft Encoder Phase B</li> <li>[3] = From Shaft Encoder Phase A &amp; B</li> <li>[4] = From Board Sync</li> <li>[5] = To Board Sync</li> <li>[6] = Pulse to Board Sync</li> <li>[7] = To Board Sync When Grabbing</li> </ul> |
| CORACQ_PRM_VERTICAL_TIMEOUT_DELAY      | min = 0 max = 16383000 step = 1                                                                                                                                                                                                                                                                                     |

## **ACQ Related Parameters**

| Parameter                    | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORACQ_PRM_LABEL             | Digital Mono #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | Digital Color RGB #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CORACQ_PRM_EVENT_TYPE        | CORACQ_VAL_EVENT_TYPE_START_OF_FRAME (0x80000)<br>CORACQ_VAL_EVENT_TYPE_END_OF_FRAME (0x800000)<br>CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER (0x1000000)<br>CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER2 (0x80)<br>CORACQ_VAL_EVENT_TYPE_VERTICAL_SYNC (0x200000)<br>CORACQ_VAL_EVENT_TYPE_NO_PIXEL_CLK (0x40000000)<br>CORACQ_VAL_EVENT_TYPE_PIXEL_CLK (0x40000000)<br>CORACQ_VAL_EVENT_TYPE_PIXEL_CLK (0x8000000)<br>CORACQ_VAL_EVENT_TYPE_PIXEL_CLK (0x800000)<br>CORACQ_VAL_EVENT_TYPE_DATA_OVERFLOW (0x4000)<br>CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER_IGNORED (0x2000)<br>CORACQ_VAL_EVENT_TYPE_VERTICAL_TIMEOUT (0x40) |
| CORACQ_PRM_SIGNAL_STATUS     | CORACQ_VAL_SIGNAL_HSYNC_PRESENT (0x1)<br>CORACQ_VAL_SIGNAL_VSYNC_PRESENT (0x2)<br>CORACQ_VAL_SIGNAL_PIXEL_ČLK_PRESENT (0x4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CORACQ_PRM_FLAT_FIELD_ENABLE | TRUE<br>FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CORACQ_CAP_SERIAL_PORT_INDEX | Supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# Memory Error with Area Scan Frame Buffer Allocation

The memory error message [ Error: "CorXferConnect" <Xfer module> - No memory () ] may occur when loading a Sapera camera file, or when the application configures a frame buffer for area scan cameras. The problem is that the X64 Xcelera-LVDS PX4 does not have enough onboard memory for two frame buffers.

The X64 Xcelera-LVDS PX4 when used with area scan cameras, allocates two internal frame buffers in onboard memory, each equal in size to the acquisition frame buffer. This allocation is automatic at the driver level. The X64 Xcelera-LVDS PX4 driver allocates two buffers to ensure that the acquired video frame is complete and not corrupted in cases where the transfer to host system memory may be interrupted by other host system processes.

The total size of the two internal frame buffers must be somewhat smaller than the total onboard memory due to memory overhead required for image transfer management. Also note that the X64 Xcelera-LVDS PX4 dual configuration equally divides the onboard memory between the two acquisition modules, reducing the available memory for the two buffers by half.

# Sapera Servers & Resources

## Servers and Resources

### The following table describes the X64 Xcelera-LVDS PX4 Full board

| Servers                                  |             | Resources             |       |
|------------------------------------------|-------------|-----------------------|-------|
| Name                                     | Туре        | Name                  | Index |
| Xcelera-LVDS_PX4_1<br>(default firmware) | Acquisition | Digital Monochrome #1 | 0     |
|                                          | Acquisition | Digital Color RGB #1  | 1     |

## **Transfer Resource Locations**

The following table illustrates all possible source/destination pairs in a transfer.

| Source                           | Transfer passing through                                           | Destination                       |
|----------------------------------|--------------------------------------------------------------------|-----------------------------------|
| X64 Xcelera-LVDS PX4 Acquisition | 1 to 2 <sup>17</sup> internal buffers & the X64 internal processor | 1 to 2 <sup>17</sup> Host Buffers |

# **Technical Specifications**

# X64 Xcelera-LVDS PX4 Board Specifications

| Card                        | Half-length PCIe x4 card, compliant with PCIe Rev. 1.1                                                                                                                                                                                          |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acquisition                 | Interfaces to LVDS (EIA-644) type cameras<br>Up to 8-tap support<br>Area scan and Line scan<br>Pixel clock rate from 1 Hz up to 85 MHz                                                                                                          |
| Feature                     | Compliant with DALSA Trigger-to-Image Reliability framework                                                                                                                                                                                     |
| Resolution                  | Horizontal size: 8 bytes to 256 Kbytes<br>Vertical size: 1 line to infinite for Line Scan, 1 line to 16 million lines in area scan<br>Support variable frame length (up to 16 million lines)                                                    |
| Synchronization<br>Minimums | Horizontal Sync minimum: 4 pixels<br>Vertical Sync minimum: 1 line                                                                                                                                                                              |
| Base Board Memory           | 128 MB                                                                                                                                                                                                                                          |
| Scanning                    | Integrated advanced tap reversal engine allows independent tap formatting:<br>Progressive, multi-tap, multi-channel, tap reversal.                                                                                                              |
| Max Data Rate               | 640 MB/sec<br>12/14/16-bit, 4 taps @ 85MHz any tap configuration<br>8-bit, 8 taps at 85 MHz at any tap configuration                                                                                                                            |
| Pixel Format                | Support LVDS tap configuration for:<br>8, 10, 12, 14 and 16-bit mono<br>24, 30, 36, 42, 48-bit RGB                                                                                                                                              |
| Basic Post-processing       | LUT available (see LUT Availability for details):<br>1 x 8/10/12-bit in — 8/10/12-bit out monochrome<br>3 x 8/10/12-bit in — 8/10/12-bit out for RGB                                                                                            |
|                             | Real-time Flat-field/ flat-line (shading) correction supported in hardware.<br>Compensates for sensor defects such as FPN, PRNU, defective pixels and variations<br>between pixels due to the light refraction through a lens (Shading effect). |
| Controls                    | Comprehensive event notification<br>Timing control logic for EXSYNC, PRIN and strobe signals<br>External trigger latency less than 1 µsec.<br>Serial port (9600 to 115 kbps)                                                                    |
| Connectors                  | Honda-68 for camera, board trigger, strobe and serial port                                                                                                                                                                                      |
|                             | DB25 or DB37 option for opto-coupled GIOs, board trigger, strobe                                                                                                                                                                                |
|                             |                                                                                                                                                                                                                                                 |

| I/Os                | Opto-coupled dual-phase quadrature shaft encoder (TTL/RS-422 with a maximum input<br>frequency of 200 KHz)<br>1 opto-coupled external trigger inputs (5V/24V)<br>1 strobe outputs (5V)<br>4 opto-coupled general inputs (5V/24V)<br>4 general outputs<br>X/IO Interface (optional) |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Software            | Supported by Sapera LT<br>Microsoft Windows XP 32/64-bit, Vista 32/64-bit                                                                                                                                                                                                          |
| System Requirements | Intel Pentium IV class CPU, 1 GB system memory,<br>20 MB free hard-drive space, one free PCIe x4 slot.                                                                                                                                                                             |
| Board Dimensions    | Approximately 6.5 in. (16.6 cm) wide by 4 in. (10 cm) high                                                                                                                                                                                                                         |

# Host System Requirements

### General System Requirements for the X64 Xcelera-LVDS PX4

- PCI Express x4 slot or x8 slot compatible
- Note: There is no assumption made that the X64 Xcelera-LVDS PX4 will function when installed in a x16 slot. Direct testing by the user is required.

#### **Operating System Support**

Windows XP, XP 64-bit, Windows Vista

#### Environment

| Ambient Temperature: | 10° to 50° C (operation)<br>0° to 70° C (storage)           |
|----------------------|-------------------------------------------------------------|
| Relative Humidity:   | 5% to 90% non-condensing (operating)<br>0% to 95% (storage) |

#### **Power Requirements**

| +3.3V: | 1.92A (standby)<br>2.64A (during acquisition) |
|--------|-----------------------------------------------|
| +12V:  | 0.72A (standby)<br>0.81A (during acquisition) |

# **EMI Certifications**

Class B, both FCC and CE

|                                                                       | ALSA                                                                                                 |                                                                                                                          |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                       | EC & FCC DECLARATION                                                                                 | ON OF CONFORMITY                                                                                                         |
| We :                                                                  | DALSA Montreal Inc.<br>7075 Place Robert-Jonc<br>St. Laurent, Quebec, Ca                             | as, Suite 142,<br>nada H4M 2Z2                                                                                           |
| Declare under so<br>protection requir<br>laws of member<br>93/68/EEC: | le legal responsibility that the<br>ements of council directive 89<br>states relating to electromagn | following products conform to the<br>9/336 EEC on the approximation of the<br>etic compatibility, as amended by directiv |
| FI                                                                    | RAME GRABBER BOARD:                                                                                  | Xcelera-LVDS PX4                                                                                                         |
| The products to v<br>relevant harmoni<br>the Official Journ           | which this declaration relates<br>zed standards, the reference r<br>al of the European Communi       | are in conformity with the following<br>umbers of which have been published in<br>ties:                                  |
| EI<br>EI<br>EI                                                        | N55022:1998- Residential, Co<br>NV50204: 1995<br>N61000-3 & -4: 1994, 1995, 1<br>N60255-22-4: 2002   | ommercial and Light Industry<br>996, 1998, 2000, 2001                                                                    |
| Further declare u code of federal re                                  | nder our sole legal responsibi<br>gulations CFR 47 part 15 for                                       | lity that the product listed conforms to th a class B product.                                                           |
| St. Laurent, Cana<br>Location                                         | da 2008/10/03<br>Date                                                                                | Eric Caro<br>Briocaro<br>Difector,<br>Research & Development                                                             |
|                                                                       |                                                                                                      |                                                                                                                          |

# **Connector and Switch Locations**

Refer to the board layout to locate connectors or configuration switches.





## Connector, Switch, Jumper Description List

The following table lists components on the X64 Xcelera-LVDS PX4 board. Detailed information follows for connectors or switches the end user may have need of.

| Location | Description                | Location          | Description                   |
|----------|----------------------------|-------------------|-------------------------------|
| J2       | LVDS connector 3 and 4     | J11               | X-I/O Module Interface        |
| J12      | LVDS connector 1 and 2     | J13               | PC power to camera interface. |
| J3       | External Signals connector | J6,<br>J10, J2000 | Reserved                      |
| J14      | Multi Board Sync           | SW4, SW5, SW3     | Configuration micro-switches  |

# **Connector and Switch Specifications**

The following section provides the technical reference for user set configuration switches and camera connection details.

## **Configuration Micro-switches**

Three sets of 4 switches are used for user configurations not controlled by software. The following figure is a typical view of each switch set, shown with the individual switch set in the OFF position. Following the figure, each of the three switch sets is described. Refer to the board component layout for their positions.



SW1, SW2, SW3 Component View

#### SW4: General Inputs Signal Logic Threshold Level

For each general input, select the threshold voltage detected as a logic high signal. See "Note 1: General Inputs Specifications" on page 102.

| SW4<br>Switch Number | Assigned to     | OFF Position<br>( TTL & low volatage<br>differential ) | ON Position<br>(default for 24V<br>systems) |
|----------------------|-----------------|--------------------------------------------------------|---------------------------------------------|
| 1                    | general input 1 | Logic Threshold at                                     |                                             |
| 2                    | general input 2 | $\sim 2$ volts                                         | Logic Threshold at                          |
| 3                    | general input 3 | (preferred for differential                            | ~10 volts                                   |
| 4                    | general input 4 | signals)                                               |                                             |

#### SW5: Trigger Inputs Signal Switch Point

For each trigger input, select the threshold voltage detected as a logic high signal. See "Note 3: External Trigger Input Specifications" on page 103.

| SW5<br>Switch Number | Assigned to     | OFF Position<br>( TTL & low volatage<br>differential ) | ON Position<br>(for 24V systems) |
|----------------------|-----------------|--------------------------------------------------------|----------------------------------|
| 1                    | trigger input 1 | Logic Threshold at                                     |                                  |
| 2                    | trigger input 2 | ~2 volts                                               | Logic Threshold at               |
| 3                    | NA              | (preferred for differential                            | ~10 volts                        |
| 4                    | NA              | signals)                                               |                                  |

#### SW3: Normal/Safe Boot Mode & GEN2 Slot Workaround

The X64 Xcelera-LVDS PX4 powers up either in its normal state or a 'Safe Boot' mode required to load firmware under certain conditions. See the notes for SW3-1 following the table for details.

| SW3<br>Switch Number | Assigned to          | OFF Position<br>(default) | ON Position |
|----------------------|----------------------|---------------------------|-------------|
| 1                    | Boot Mode            | Normal                    | Safe        |
| 2                    | GEN2 Slot Workaround | Disabled                  | Enabled     |
| 3                    | reserved             |                           |             |
| 4                    | reserved             |                           |             |

#### SW3-1 Boot Mode Details

- Normal Mode: Board powers up in the normal operating mode.
- Safe Mode: With the computer off, move the switch to the ON position. This mode is required if any problems occurred while updating firmware. With the switch in the ON position, power on the computer and update the firmware again. After the update completes power off the computer and move the switch to the OFF position. Power on the computer once again to use the Xcelera-LVDS PX4 normally. (See "Recovering from a Firmware Update Error" on page 39).

#### SW3-2 GEN2 Slot Workaround Details

- Normal Mode: Normal operation of the Xcelera-LVDS PX4.
- **GEN2 Slot Workaround:** In computers with GEN2 slots and the Intel 5400 chipset. there have been circumstances where the board is not detected properly. This issue is identified by the status LED 2 that keeps on flashing red at boot time. In one example, with a Dell T5400 or T7400 computer, the following message was displayed by the computer BIOS:"Alert! Error initializing PCI Express slot".

- Therefore when using such a computer, with the Xcelera SW3-2 in the ON position, the computer should boot normally and the Xcelera should function. If this is not the case, please contact Technical Support ("Contact Information" on page 127) with details about your computer.
- Note: ECO 4252 is needed for SW3-2 to be functional.

## X64 Xcelera-LVDS PX4 End Bracket View



- Connector #1 is for camera Taps 1 and 2
- Connector #2 is for camera Taps 3 and 4
- Connector #3 is for camera Taps 5 and 6
- Connector #4 is for camera Taps 7 and 8

#### Status LEDs Functional Description

| Status LED 1:               |                                                                           |
|-----------------------------|---------------------------------------------------------------------------|
| Red                         | No camera connected or camera has no power                                |
| Green                       | Camera connected and is ON. Camera clock detected. No line valid detected |
| Slow flashing green (2 Hz)  | Camera Line Valid signal detected                                         |
| Fast flashing green (16 Hz) | Acquisition in progress                                                   |
| Status LED 2:               |                                                                           |
| Off                         | Board initialization good                                                 |
| Red                         | Board initialization error on computer boot-up                            |

## J12: Dual 68 Pin VHDCI Connectors

Camera interface J12 consists of two VHDCI connectors (refer to the connector bracket view "X64 Xcelera-LVDS PX4 End Bracket View" on page 87). Connector #1 is for camera taps 1 and 2, while connector #2 is for camera taps 3 and 4.



All signals support RS-644 (LVDS)

- High voltage/Low voltage minimum differential threshold = 100mV
- Maximum common mode voltage = 5 V
- Maximum Input Current =  $\pm 10$ mA
- Typical connector part number: Honda HDRA-E68W1LFDT1EC-SL+

## J12 – Connector 1: Monochrome Tap 1 & 2 Pinout

Camera taps #1 and #2.

| J12 – Connector 1<br>VHDCI<br>Pin Number | Name    | Туре  | Description     |
|------------------------------------------|---------|-------|-----------------|
| 1                                        | DINa_0+ | Input | Bit 0 + (Tap 1) |
| 35                                       | DINa_0- | Input | Bit 0 - (Tap 1) |
| 2                                        | DINa_1+ | Input | Bit 1 + (Tap 1) |
| 36                                       | DINa_1- | Input | Bit 1 - (Tap 1) |
| 3                                        | DINa_2+ | Input | Bit 2 + (Tap 1) |
| 37                                       | DINa_2- | Input | Bit 2 - (Tap 1) |
| 4                                        | DINa_3+ | Input | Bit 3 + (Tap 1) |
| 38                                       | DINa_3- | Input | Bit 3 - (Tap 1) |
| 5                                        | DINa_4+ | Input | Bit 4 + (Tap 1) |
| 39                                       | DINa_4- | Input | Bit 4 - (Tap 1) |
| 6                                        | DINa_5+ | Input | Bit 5 + (Tap 1) |
| 40                                       | DINa_5- | Input | Bit 5 - (Tap 1) |
| 7                                        | DINa_6+ | Input | Bit 6 + (Tap 1) |

| 41     | DINa_6-  | Input                          | Bit 6 - (Tap 1)                          |
|--------|----------|--------------------------------|------------------------------------------|
| 8      | DINa_7+  | Input                          | Bit 7 + (Tap 1)                          |
| 42     | DINa_7-  | Input                          | Bit 7 - (Tap 1)                          |
| 9, 43  | GND      |                                | Ground                                   |
| 10     | DINb_0+  | Input                          | Bit 0 + (Tap 2)                          |
| 44     | DINb_0-  | Input                          | Bit 0 - (Tap 2)                          |
| 11     | DINb_1+  | Input                          | Bit 1 + (Tap 2)                          |
| 45     | DINb_1-  | Input                          | Bit 1 - (Tap 2)                          |
| 12     | DINb_2+  | Input                          | Bit 2 + (Tap 2)                          |
| 46     | DINb_2-  | Input                          | Bit 2 - (Tap 2)                          |
| 13     | DINb_3+  | Input                          | Bit 3 + (Tap 2)                          |
| 47     | DINb_3-  | Input                          | Bit 3 - (Tap 2)                          |
| 14     | DINb_4+  | Input                          | Bit 4 + (Tap 2)                          |
| 48     | DINb_4-  | Input                          | Bit 4 - (Tap 2)                          |
| 15     | DINb_5+  | Input                          | Bit 5 + (Tap 2)                          |
| 49     | DINb_5-  | Input                          | Bit 5 - (Tap 2)                          |
| 16     | DINb_6+  | Input                          | Bit 6 + (Tap 2)                          |
| 50     | DINb_6-  | Input                          | Bit 6 - (Tap 2)                          |
| 17     | DINb_7+  | Input                          | Bit 7 + (Tap 2)                          |
| 51     | DINb_7-  | Input                          | Bit 7 - (Tap 2)                          |
| 18, 52 | GND      |                                | Ground                                   |
| 19     | PHA+     | Input                          | Shaft Encoder Phase A +                  |
| 53     | PHA-     | Input                          | Shaft Encoder Phase A -                  |
| 20     | PHB+     | Input                          | Shaft Encoder Phase B +                  |
| 54     | PHB-     | Input                          | Shaft Encoder Phase B -                  |
| 21     | Trig1+   | Input                          | External Trigger 1 +                     |
| 55     | Trig1-   | Input                          | External Trigger 1 -                     |
| 22     | Out12V   | Output                         | 12 Volt Source (fused – power off reset) |
| 56     | Out12V   | Output                         | 12 Volt Source (fused – power off reset) |
| 23     | cam CC2+ | Output<br>(default: PRIN)      | Programmable Camera Control 2 +          |
| 57     | cam CC2- | Output                         | Programmable Camera Control 2 -          |
| 24     | cam CC1+ | Output<br>(default:<br>EXSYNC) | Programmable Camera Control 1 +          |
| 58     | cam CC1- | Output                         | Programmable Camera Control 1 -          |
| 25     | cam CC3+ | Output<br>(default: Forward)   | Programmable Camera Control 3 +          |

| 59     | cam CC3-  | Output                         | Programmable Camera Control 3 - |
|--------|-----------|--------------------------------|---------------------------------|
| 26     | STROBE1   | Output                         | Strobe control 1 (TTL)          |
| 60     |           | Output                         | Reserved                        |
| 27, 61 | GND       |                                | Ground                          |
| 28     | cam LVAL+ | Input                          | Camera Line Valid +             |
| 62     | cam LVAL- | Input                          | Camera Line Valid -             |
| 29     | cam FVAL+ | Input                          | Camera Frame Valid +            |
| 63     | cam FVAL- | Input                          | Camera Frame Valid -            |
| 30     | cam DVAL+ | Input                          | Camera Data Valid +             |
| 64     | cam DVAL- | Input                          | Camera Data Valid -             |
| 31     | cam PCLK+ | Input                          | Camera Pixel Clock In +         |
| 65     | cam PCLK- | Input                          | Camera Pixel Clock In -         |
| 32     | RS-232-Tx | Serial Out                     |                                 |
| 66     |           |                                | Reserved                        |
| 33     | cam CC4+  | Output<br>(default: Pixel clk) | Programmable Camera Control 4 + |
| 67     | cam CC4-  | Output                         | Programmable Camera Control 4 - |
| 34     | RS-232-Rx | Serial In                      |                                 |
| 68     |           |                                | Reserved                        |

## J12 – Connector 2: Monochrome Tap 3 & 4 Pinout

Camera taps #3 and #4.

| J12 – Connector 2 | Name    | Туре  | Description     |
|-------------------|---------|-------|-----------------|
| Pin Number        |         |       |                 |
| 69                | DINc_0+ | Input | Bit 0 + (Tap 3) |
| 103               | DINc_0- | Input | Bit 0 - (Tap 3) |
| 70                | DINc_1+ | Input | Bit 1 + (Tap 3) |
| 104               | DINc_1- | Input | Bit 1 - (Tap 3) |
| 71                | DINc_2+ | Input | Bit 2 + (Tap 3) |
| 105               | DINc_2- | Input | Bit 2 - (Tap 3) |
| 72                | DINc_3+ | Input | Bit 3 + (Tap 3) |
| 106               | DINc_3- | Input | Bit 3 - (Tap 3) |
| 73                | DINc_4+ | Input | Bit 4 + (Tap 3) |
| 107               | DINc_4- | Input | Bit 4 - (Tap 3) |
| 74                | DINc_5+ | Input | Bit 5 + (Tap 3) |

| 108     | DINc_5- | Input | Bit 5 - (Tap 3) |
|---------|---------|-------|-----------------|
| 75      | DINc_6+ | Input | Bit 6 + (Tap 3) |
| 109     | DINc_6- | Input | Bit 6 - (Tap 3) |
| 76      | DINc_7+ | Input | Bit 7 + (Tap 3) |
| 110     | DINc_7- | Input | Bit 7 - (Tap 3) |
| 77, 111 | GND     |       | Ground          |
| 78      | DINd_0+ | Input | Bit 0 + (Tap 4) |
| 112     | DINd_0- | Input | Bit 0 - (Tap 4) |
| 79      | DINd_1+ | Input | Bit 1 + (Tap 4) |
| 113     | DINd_1- | Input | Bit 1 - (Tap 4) |
| 80      | DINd_2+ | Input | Bit 2 + (Tap 4) |
| 114     | DINd_2- | Input | Bit 2 - (Tap 4) |
| 81      | DINd_3+ | Input | Bit 3 + (Tap 4) |
| 115     | DINd_3- | Input | Bit 3 - (Tap 4) |
| 82      | DINd_4+ | Input | Bit 4 + (Tap 4) |
| 116     | DINd_4- | Input | Bit 4 - (Tap 4) |
| 83      | DINd_5+ | Input | Bit 5 + (Tap 4) |
| 117     | DINd_5- | Input | Bit 5 - (Tap 4) |
| 84      | DINd_6+ | Input | Bit 6 + (Tap 4) |
| 118     | DINd_6- | Input | Bit 6 - (Tap 4) |
| 85      | DINd_7+ | Input | Bit 7 + (Tap 4) |
| 119     | DINd_7- | Input | Bit 7 - (Tap 4) |
| 86, 120 | GND     |       | Ground          |
| 87      |         |       | Reserved        |
| 121     |         |       | Reserved        |
| 88      |         |       | Reserved        |
| 122     |         |       | Reserved        |
| 89      |         |       | Reserved        |
| 123     |         |       | Reserved        |
| 90      |         |       | Reserved        |
| 124     |         |       | Reserved        |
| 91      |         |       | Reserved        |
| 125     |         |       | Reserved        |
| 92      |         |       | Reserved        |
| 126     |         |       | Reserved        |
| 93      |         |       | Reserved        |
| 127     |         |       | Reserved        |

| 94      |     | Reserved |
|---------|-----|----------|
| 128     |     | Reserved |
| 95, 129 | GND | Ground   |
| 96      |     | Reserved |
| 130     |     | Reserved |
| 97      |     | Reserved |
| 131     |     | Reserved |
| 98      |     | Reserved |
| 132     |     | Reserved |
| 99      |     | Reserved |
| 133     |     | Reserved |
| 100     |     | Reserved |
| 134     |     | Reserved |
| 101     |     | Reserved |
| 135     |     | Reserved |
| 102     |     | Reserved |
| 136     |     | Reserved |

## J12 – Connector 1: RGB-24 & RGB-30 Pinout

| Pin # | RGB-24        | Туре | RGB-30        | Туре |
|-------|---------------|------|---------------|------|
| 1     | BLUE_0+(LSB)  | In   | BLUE_0+ (LSB) | In   |
| 35    | BLUE_0- (LSB) | In   | BLUE_0- (LSB) | In   |
| 2     | BLUE_1+       | In   | BLUE_1+       | In   |
| 36    | BLUE_1-       | In   | BLUE_1-       | In   |
| 3     | BLUE_2+       | In   | BLUE_2+       | In   |
| 37    | BLUE_2-       | In   | BLUE_2-       | In   |
| 4     | BLUE_3+       | In   | BLUE_3+       | In   |
| 38    | BLUE_3-       | In   | BLUE_3-       | In   |
| 5     | BLUE_4+       | In   | BLUE_4+       | In   |
| 39    | BLUE_4-       | In   | BLUE_4-       | In   |
| 6     | BLUE_5+       | In   | BLUE_5+       | In   |
| 40    | BLUE_5-       | In   | BLUE_5-       | In   |
| 7     | BLUE_6+       | In   | BLUE_6+       | In   |
| 41    | BLUE_6-       | In   | BLUE_6-       | In   |
| 8     | BLUE_7+ (MSB) | In   | BLUE_7+       | In   |
| 42    | BLUE_7- (MSB) | In   | BLUE_7-       | In   |
| 9, 43 | GND           |      | GND           |      |
| 10    | GREEN_0+      | In   | BLUE_8+       | In   |
| 44    | GREEN_0-      | In   | BLUE_8-       | In   |
| 11    | GREEN_1+      | In   | BLUE_9+ (MSB) | In   |
| 45    | GREEN_1-      | In   | BLUE_9- (MSB) | In   |
| 12    | GREEN_2+      | In   | GREEN_0+      | In   |
| 46    | GREEN_2-      | In   | GREEN_0-      | In   |
| 13    | GREEN_3+      | In   | GREEN_1+      | In   |
| 47    | GREEN_3-      | In   | GREEN_1-      | In   |
| 14    | GREEN_4+      | In   | GREEN_2+      | In   |
| 48    | GREEN_4-      | In   | GREEN_2-      | In   |
| 15    | GREEN_5+      | In   | GREEN_3+      | In   |
| 49    | GREEN_5-      | In   | GREEN_3-      | In   |
| 16    | GREEN_6+      | In   | GREEN_4+      | In   |
| 50    | GREEN_6-      | In   | GREEN_4-      | In   |
| 17    | GREEN_7+      | In   | GREEN_5+      | In   |
| 51    | GREEN_7-      | In   | GREEN_5-      | In   |

| 18, 52 | GND                              |     | GND                              |     |
|--------|----------------------------------|-----|----------------------------------|-----|
| 19     | Shaft encoder phase A +          | In  | Shaft encoder phase A +          | In  |
| 53     | Shaft encoder phase A -          | In  | Shaft encoder phase A -          | In  |
| 20     | Shaft encoder phase B +          | In  | Shaft encoder phase B +          | In  |
| 54     | Shaft encoder phase B -          | In  | Shaft encoder phase B -          | In  |
| 21     | External Trigger 1 +             | In  | External Trigger 1 +             | In  |
| 55     | External Trigger 1 -             | In  | External Trigger 1 -             | In  |
| 22     | 12Vout (fused – power off reset) | Out | 12Vout (fused – power off reset) | Out |
| 56     | 12Vout (fused – power off reset) | Out | 12Vout (fused – power off reset) | Out |
| 23     | CC2+                             | Out | CC2+                             | Out |
| 57     | CC2-                             | Out | CC2-                             | Out |
| 24     | CC1+                             | Out | CC1+                             | Out |
| 58     | CC1-                             | Out | CC1-                             | Out |
| 25     | CC3+                             | Out | CC3+                             | Out |
| 59     | CC3-                             | Out | CC3-                             | Out |
| 26     | Strobe Control 1                 | Out | Strobe Control 1                 | Out |
| 60     | Strobe Control 2                 | Out | Strobe Control 2                 | Out |
| 27, 61 | GND                              |     | GND                              |     |
| 28     | LVAL+                            | In  | LVAL+                            | In  |
| 62     | LVAL -                           | In  | LVAL -                           | In  |
| 29     | FVAL +                           | In  | FVAL +                           | In  |
| 63     | FVAL -                           | In  | FVAL -                           | In  |
| 30     | DVAL +                           | In  | DVAL +                           | In  |
| 64     | DVAL -                           | In  | DVAL -                           | In  |
| 31     | PCLK+                            | In  | PCLK+                            | In  |
| 65     | PCLK-                            | In  | PCLK-                            | In  |
| 32     | RS-232 Rx (revision B board)     | In  | RS-232 Rx (revision B board)     | In  |
| 66     | reserved                         |     | reserved                         |     |
| 33     | CC4+                             | Out | CC4+                             | Out |
| 67     | CC4-                             | Out | CC4-                             | Out |
| 34     | RS-232 Tx (revision B board)     | Out | RS-232 Tx (revision B board)     | Out |
| 68     | reserved                         |     | reserved                         |     |

| Pin #   | RGB-24                          | Туре | RGB-30                          | Туре |
|---------|---------------------------------|------|---------------------------------|------|
| 69      | RED_0+(LSB)                     | In   | GREEN_6+                        | In   |
| 103     | RED_0- (LSB)                    | In   | GREEN_6-                        | In   |
| 70      | RED_1+                          | In   | GREEN_7+                        | In   |
| 104     | RED_1-                          | In   | GREEN_7-                        | In   |
| 71      | RED_2+                          | In   | GREEN_8+                        | In   |
| 105     | RED_2-                          | In   | GREEN_8-                        | In   |
| 72      | RED_3+                          | In   | GREEN_9+                        | In   |
| 106     | RED_3-                          | In   | GREEN_9-                        | In   |
| 73      | RED_4+                          | In   | RED_0+ (LSB)                    | In   |
| 107     | RED_4-                          | In   | RED_0- (LSB)                    | In   |
| 74      | RED_5+                          | In   | RED_1+                          | In   |
| 108     | RED_5-                          | In   | RED_1-                          | In   |
| 75      | RED_6+                          | In   | RED_2+                          | In   |
| 109     | RED_6-                          | In   | RED_2-                          | In   |
| 76      | RED_7+ (MSB)                    | In   | RED_3+                          | In   |
| 110     | RED_7- (MSB)                    | In   | RED_3-                          | In   |
| 77, 111 | GND                             |      | GND                             |      |
| 78      | reserved                        |      | RED_4+                          | In   |
| 112     | reserved                        |      | RED_4-                          | In   |
| 79      | reserved                        |      | RED_5+                          | In   |
| 113     | reserved                        |      | RED_5-                          | In   |
| 80      | reserved                        |      | RED_6+                          | In   |
| 114     | reserved                        |      | RED_6-                          | In   |
| 81      | reserved                        |      | RED_7+                          | In   |
| 115     | reserved                        |      | RED_7-                          | In   |
| 82      | reserved                        |      | RED_8+                          | In   |
| 116     | reserved                        |      | RED_8+                          | In   |
| 83      | reserved                        |      | RED_9+ (MSB)                    | In   |
| 117     | reserved                        |      | RED_9+ (MSB)                    | In   |
| 86, 120 | GND                             |      | GND                             |      |
| 95, 129 | GND                             |      | GND                             |      |
|         | All remaining pins are Reserved |      | All remaining pins are Reserved |      |

## J12 – Connector 2: RGB-24 & RGB-30 Pinout

## J2: Dual 68 Pin VHDCI Connectors

Camera interface J2 consists of two VHDCI connectors (refer to the X64-LVDS connector bracket view "X64 Xcelera-LVDS PX4 End Bracket View" on page 87). Connector #3 is for camera taps 5 and 6, while connector #4 is for camera taps 7 and 8.



All signals support RS-644 (LVDS)

- High voltage/Low voltage minimum differential threshold = 100mV
- Maximum common mode voltage = 5 V
- Maximum Input Current =  $\pm 10$ mA
- Typical connector part number: Honda HDRA-E68W1LFDT1EC-SL+

## J2 – Connector 3: Monochrome Tap 5 & 6 Pinout

| Camera | taps | #5  | and | #6   |
|--------|------|-----|-----|------|
| Cumera | ups  | 110 | unu | 110. |

| J2 – Connector 3 | Name    | Туре  | Description     |
|------------------|---------|-------|-----------------|
| Pin Number       |         |       |                 |
| 1                | DINe_0+ | Input | Bit 0 + (Tap 5) |
| 35               | DINe_0- | Input | Bit 0 - (Tap 5) |
| 2                | DINe_1+ | Input | Bit 1 + (Tap 5) |
| 36               | DINe_1- | Input | Bit 1 - (Tap 5) |
| 3                | DINe_2+ | Input | Bit 2 + (Tap 5) |
| 37               | DINe_2- | Input | Bit 2 - (Tap 5) |
| 4                | DINe_3+ | Input | Bit 3 + (Tap 5) |
| 38               | DINe_3- | Input | Bit 3 - (Tap 5) |
| 5                | DINe_4+ | Input | Bit 4 + (Tap 5) |
| 39               | DINe_4- | Input | Bit 4 - (Tap 5) |
| 6                | DINe_5+ | Input | Bit 5 + (Tap 5) |
| 40               | DINe_5- | Input | Bit 5 - (Tap 5) |

| 7      | DINe_6+  | Input  | Bit 6 + (Tap 5)                          |
|--------|----------|--------|------------------------------------------|
| 41     | DINe_6-  | Input  | Bit 6 - (Tap 5)                          |
| 8      | DINe_7+  | Input  | Bit 7 + (Tap 5)                          |
| 42     | DINe_7-  | Input  | Bit 7 - (Tap 5)                          |
| 9, 43  | GND      |        | Ground                                   |
| 10     | DINf_0+  | Input  | Bit 0 + (Tap 6)                          |
| 44     | DINf_0-  | Input  | Bit 0 - (Tap 6)                          |
| 11     | DINf_1+  | Input  | Bit 1 + (Tap 6)                          |
| 45     | DINf_1-  | Input  | Bit 1 - (Tap 6)                          |
| 12     | DINf_2+  | Input  | Bit 2 + (Tap 6)                          |
| 46     | DINf_2-  | Input  | Bit 2 - (Tap 6)                          |
| 13     | DINf_3+  | Input  | Bit 3 + (Tap 6)                          |
| 47     | DINf_3-  | Input  | Bit 3 - (Tap 6)                          |
| 14     | DINf_4+  | Input  | Bit 4 + (Tap 6)                          |
| 48     | DINf_4-  | Input  | Bit 4 - (Tap 6)                          |
| 15     | DINf_5+  | Input  | Bit 5 + (Tap 6)                          |
| 49     | DINf_5-  | Input  | Bit 5 - (Tap 6)                          |
| 16     | DINf_6+  | Input  | Bit 6 + (Tap 6)                          |
| 50     | DINf_6-  | Input  | Bit 6 - (Tap 6)                          |
| 17     | DINf_7+  | Input  | Bit 7 + (Tap 6)                          |
| 51     | DINf_7-  | Input  | Bit 7 - (Tap 6)                          |
| 18, 52 | GND      |        | Ground                                   |
| 19     | PHA+     | Input  | Shaft Encoder Phase A +                  |
| 53     | PHA-     | Input  | Shaft Encoder Phase A -                  |
| 20     | PHB+     | Input  | Shaft Encoder Phase B +                  |
| 54     | PHB-     | Input  | Shaft Encoder Phase B -                  |
| 21     | Reserved | Input  | Reserved                                 |
| 55     | Reserved | Input  | Reserved                                 |
| 22     | Out12V   | Output | 12 Volt Source (fused – power off reset) |
| 56     | Out12V   | Output | 12 Volt Source (fused – power off reset) |
| 23     |          | Output | Reserved                                 |
| 57     |          | Output | Reserved                                 |
| 24     |          | Output | Reserved                                 |
| 58     |          | Output | Reserved                                 |
| 25     |          | Output | Reserved                                 |
| 59     |          | Output | Reserved                                 |
| 26     | STROBE1  | Output | Strobe control 1 (TTL)                   |

| 60     |     | Output | Reserved |
|--------|-----|--------|----------|
| 27, 61 | GND |        | Ground   |
| 28     |     | Input  | Reserved |
| 62     |     | Input  | Reserved |
| 29     |     | Input  | Reserved |
| 63     |     | Input  | Reserved |
| 30     |     | Input  | Reserved |
| 64     |     | Input  | Reserved |
| 31     |     | Input  | Reserved |
| 65     |     | Input  | Reserved |
| 32     |     |        | Reserved |
| 66     |     |        | Reserved |
| 33     |     | Output | Reserved |
| 67     |     | Output | Reserved |
| 34     |     |        | Reserved |
| 68     |     |        | Reserved |

## J2 – Connector 4: Monochrome Tap 7 & 8 Pinout

Camera taps #7 and #8.

| J2 – Connector 4<br>VHDCI<br>Pin Number | Name    | Туре  | Description                                     |
|-----------------------------------------|---------|-------|-------------------------------------------------|
| 69                                      | DINg 0+ | Input | Bit 0 + (Tap 7)                                 |
| 103                                     | DINg 0- | Input | Bit 0 = (Tap 7)                                 |
| 105                                     | Ding_0- | mput  | $\operatorname{Bit} 0 - (\operatorname{Iap} 7)$ |
| 70                                      | DINg_1+ | Input | Bit $1 + (Tap 7)$                               |
| 104                                     | DINg_1- | Input | Bit 1 - (Tap 7)                                 |
| 71                                      | DINg_2+ | Input | Bit 2 + (Tap 7)                                 |
| 105                                     | DINg_2- | Input | Bit 2 - (Tap 7)                                 |
| 72                                      | DINg_3+ | Input | Bit 3 + (Tap 7)                                 |
| 106                                     | DINg_3- | Input | Bit 3 - (Tap 7)                                 |
| 73                                      | DINg_4+ | Input | Bit 4 + (Tap 7)                                 |
| 107                                     | DINg_4- | Input | Bit 4 - (Tap 7)                                 |
| 74                                      | DINg_5+ | Input | Bit 5 + (Tap 7)                                 |
| 108                                     | DINg_5- | Input | Bit 5 - (Tap 7)                                 |
| 75                                      | DINg_6+ | Input | Bit 6 + (Tap 7)                                 |
| 109                                     | DINg_6- | Input | Bit 6 - (Tap 7)                                 |

| 76      | DINg_7+ | Input | Bit 7 + (Tap 7) |
|---------|---------|-------|-----------------|
| 110     | DINg_7- | Input | Bit 7 - (Tap 7) |
| 77, 111 | GND     |       | Ground          |
| 78      | DINh_0+ | Input | Bit 0 + (Tap 8) |
| 112     | DINh_0- | Input | Bit 0 - (Tap 8) |
| 79      | DINh_1+ | Input | Bit 1 + (Tap 8) |
| 113     | DINh_1- | Input | Bit 1 - (Tap 8) |
| 80      | DINh_2+ | Input | Bit 2 + (Tap 8) |
| 114     | DINh_2- | Input | Bit 2 - (Tap 8) |
| 81      | DINh_3+ | Input | Bit 3 + (Tap 8) |
| 115     | DINh_3- | Input | Bit 3 - (Tap 8) |
| 82      | DINh_4+ | Input | Bit 4 + (Tap 8) |
| 116     | DINh_4- | Input | Bit 4 - (Tap 8) |
| 83      | DINh_5+ | Input | Bit 5 + (Tap 8) |
| 117     | DINh_5- | Input | Bit 5 - (Tap 8) |
| 84      | DINh_6+ | Input | Bit 6 + (Tap 8) |
| 118     | DINh_6- | Input | Bit 6 - (Tap 8) |
| 85      | DINh_7+ | Input | Bit 7 + (Tap 8) |
| 119     | DINh_7- | Input | Bit 7 - (Tap 8) |
| 86, 120 | GND     |       | Ground          |
| 87      |         |       | Reserved        |
| 121     |         |       | Reserved        |
| 88      |         |       | Reserved        |
| 122     |         |       | Reserved        |
| 89      |         |       | Reserved        |
| 123     |         |       | Reserved        |
| 90      |         |       | Reserved        |
| 124     |         |       | Reserved        |
| 91      |         |       | Reserved        |
| 125     |         |       | Reserved        |
| 92      |         |       | Reserved        |
| 126     |         |       | Reserved        |
| 93      |         |       | Reserved        |
| 127     |         |       | Reserved        |
| 94      |         |       | Reserved        |
| 128     |         |       | Reserved        |
| 95, 129 | GND     |       | Ground          |

| 96  |  | Reserved |
|-----|--|----------|
| 130 |  | Reserved |
| 97  |  | Reserved |
| 131 |  | Reserved |
| 98  |  | Reserved |
| 132 |  | Reserved |
| 99  |  | Reserved |
| 133 |  | Reserved |
| 100 |  | Reserved |
| 134 |  | Reserved |
| 101 |  | Reserved |
| 135 |  | Reserved |
| 102 |  | Reserved |
| 136 |  | Reserved |

## J3: External Signals Connector

## J3 Pin Header Numbering Detail

| 2 | 4 | <br>38 | 40 |
|---|---|--------|----|
| 1 | 3 | <br>37 | 39 |

## J3 Signal Descriptions

| Description                                    | Pin # | Pin # | Description                     |
|------------------------------------------------|-------|-------|---------------------------------|
| Ground                                         | 1     | 2     | Ground                          |
| General Input 0 +<br>(see note 1)              | 3     | 4     | General Input 0 -               |
| General Input 1 +                              | 5     | 6     | General Input 1 -               |
| General Input 2 +                              | 7     | 8     | General Input 2 -               |
| General Input 3 +                              | 9     | 10    | General Input 3 -               |
| General Output 0 +<br>(see note 2)             | 11    | 12    | General Output 0 -              |
| General Output 1 +                             | 13    | 14    | General Output 1 -              |
| General Output 2 +                             | 15    | 16    | General Output 2 -              |
| General Output 3 +                             | 17    | 18    | General Output 3 -              |
| External Trigger Input 0 +<br>(see note 3)     | 19    | 20    | External Trigger Input 0 -      |
| External Trigger Input 1 +                     | 21    | 22    | External Trigger Input 1 -      |
| Shaft Encoder Phase A +<br>(see note 4)        | 23    | 24    | Shaft Encoder Phase A -         |
| Shaft Encoder Phase B +                        | 25    | 26    | Shaft Encoder Phase B -         |
| Ground                                         | 27    | 28    | Strobe Output 0<br>(see note 5) |
| Ground                                         | 29    | 30    | Strobe Output 1                 |
| Ground                                         | 31    | 32    | Ground                          |
| Power Output 5 Volts, 1.5A max<br>(see note 6) | 33    | 34    | Power Output 5 Volts, 1.5A max  |
| Power Output 12 Volts, 1.5A max                | 35    | 36    | Power Output 12 Volts, 1.5A max |
| Ground                                         | 37    | 38    | Ground                          |
| Ground                                         | 39    | 40    | Ground                          |

#### **Note 1: General Inputs Specifications**

Each of the four General Inputs are opto-coupled and able to connect to differential signals (RS422) or single ended TTL source signals. These inputs generate individual interrupts and are read by the Sapera application. The following figure is typical for each Genera Input.



### **Input Details:**

- For single ended TTL signals, the Gin- pin is connected to ground. The threshold point is ~10V by default (for 24V systems) and can be change to ~2V (for TTL or low voltage differential) with SW1.
- Each input has a ferrite bead plus a 650 ohm series resistor on the opto-coupler anode.
- Each input provides some high frequency noise filtering.
- Maximum input signal frequency is 25 KHz.

## Note 2: General Outputs Specifications

Each of the four General Outputs are opto-coupled. Each output is an isolated open-collector NPN transistor switch. The following figure is typical for each General Output.



#### **Output Details:**

- Each output has ferrite beads plus a 680 ohm series resistor on the cathode (+) connection.
- Maximum output device differential voltage is 25V.
- Maximum output device sink current is 35mA with 25V output differential.
- Maximum reverse voltage is 25V.
- Maximum output switching frequency is limited by driver and register access on the PCIe bus.

## Note 3: External Trigger Input Specifications

The two Trigger Inputs are opto-coupled and compatible to differential signals (RS422) or single ended TTL source signals. The following figure is typical for each External Trigger Input.



- For single ended TTL signals, the TrigIn- pin is connected to ground. The threshold point is ~10V by default (for 24V systems) and can be changed to ~2V (for TTL or low voltage differential) with SW2.
- The incoming trigger pulse is software "debounced" to ensure that no voltage glitch is detected as a valid trigger pulse. This debounce circuit time constant can be programmed from 0µs to 255µs. Any pulse smaller than the programmed value is blocked and therefore not seen by the acquisition circuitry. If no debouncing value is specified (value of 0µs), the minimum value of 1µs will be used.
- Each input has a ferrite bead plus a 650 ohm series resistor on the opto-coupler anode.
- Maximum input signal frequency is 100 KHz.
- Refer to Sapera parameters: CORACQ\_PRM\_EXT\_TRIGGER\_SOURCE CORACQ\_PRM\_EXT\_TRIGGER\_ENABLE CORACQ\_PRM\_EXT\_TRIGGER\_LEVEL CORACQ\_PRM\_EXT\_FRAME\_TRIGGER\_LEVEL CORACQ\_PRM\_EXT\_TRIGGER\_DETECTION CORACQ\_PRM\_EXT\_TRIGGER\_DURATION
- See also \*.cvi file entries: External Trigger Level, External Frame Trigger Level, External Trigger Enable, External Trigger Detection.
- External Trigger Input 2 used for two pulse external trigger with variable frame length Line Scan acquisition.

•



Figure 1: External Trigger Input Validation & Delay

| Let          | $t(et) = time of external trigger in \mu s$                |  |  |
|--------------|------------------------------------------------------------|--|--|
|              | $t(vt)$ = time of validated trigger in $\mu s$             |  |  |
|              | t(oc) = time opto-coupler takes to change state            |  |  |
|              | t(d) = debouncing duration from 1 to 255µs                 |  |  |
|              |                                                            |  |  |
| trigger high | For an active high external trigger, $t(oc) = 0.5 \mu s$ : |  |  |
|              | $t(vt) = t(et) + 0.5\mu s + t(d)$                          |  |  |
|              |                                                            |  |  |
| trigger low  | For an active low external trigger, $t(oc) = 4.2 \mu s$ :  |  |  |
|              | $t(vt) = t(et) + 4.2\mu s + t(d)$                          |  |  |

**Note:** DALSA recommends using an active high external trigger, which minimizes the time it takes the opto-coupler to change state. Specifically, the opto-coupler response time is  $0.5\mu$ s for active high compared to  $4.2\mu$ s for active low.

If the duration of the external trigger is > t(oc) + t(d), then a valid acquisition trigger is detected. Therefore, the external pulse with active high polarity must be at least 1.5µs (if debounce time is set to 1) in order to be acknowledged. Any pulse larger than 5.2µs is considered valid.

It is possible to emulate an external trigger using the software trigger, generated by a function call from an application.

## Note 4: Shaft Encoder Input Specifications

Dual Quadrature Shaft Encoder Inputs (phase A and phase B) are opto-coupled and able to connect to differential signals (RS422) or single ended TTL source signals. The following figure is typical for each input.



- For single ended TTL signals, the SE- pin is connected to ground. The threshold point is ~2V.
- Each input has a ferrite bead plus a 220 ohm series resistor on the opto-coupler anode.
- Maximum input signal frequency is 200 KHz.
- Opto-coupler response time is 0.25µs for a rising signal.
- Opto-coupler response time is 2.8µs for a falling signal.
- See "Line Trigger Source Selection for Line Scan Applications" on page 61 for more information.
- Refer to Sapera parameters: CORACQ\_PRM\_SHAFT\_ENCODER\_ENABLE CORACQ\_PRM\_SHAFT\_ENCODER\_DROP or refer to CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_ENABLE CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_DETECTION CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_LEVEL (fixed at RS-422) CORACQ\_PRM\_EXT\_LINE\_TRIGGER\_SOURCE
- See also \*.cvi file entries: Shaft Encoder Enable, Shaft Encoder Pulse Drop or see External Line Trigger Enable, External Line Trigger Detection, External Line Trigger Level, External Line Trigger Source.

## Note 5: Strobe Output Specifications

Dual TTL Strobe outputs are provided. The following figure is typical for each strobe out.



- Each strobe output is a tri-state driver, enabled by software.
- Each strobe output is 5V TTL level.
- Each output has a ferrite bead.
- Maximum source current is 32mA typical.
- Maximum sink current is 32mA typical.
- Output switching is < 4.2ns typical.
- Refer to Sapera Strobe Methods parameters: CORACQ\_PRM\_STROBE\_ENABLE CORACQ\_PRM\_STROBE\_POLARITY CORACQ\_PRM\_STROBE\_LEVEL CORACQ\_PRM\_STROBE\_METHOD CORACQ\_PRM\_STROBE\_DELAY CORACQ\_PRM\_STROBE\_DURATION
- See also \*.cvi file entries: Strobe Enable, Strobe Polarity, Strobe Level, Strobe Method, Strobe Delay, Strobe Duration.

## Note 6: DC Power Details

- Connect the PC floppy drive power connector to J7 so as to supply DC power to a camera. Both 5Vdc and 12Vdc are available on J3 or on the DB37 External Signals Bracket Assembly.
- Both the 5Volt and 12Volt power pins have a 1.5 amp re-settable fuse on the board. If the fuse is tripped, turn off the host computer power. When the computer is turned on again, the fuse is automatically reset.
# External Signals Connector Bracket Assembly (Type 1)

The External Signals bracket (OC-X4CC-IOCAB) provides a simple way to bring out the signals from the External Signals Connector J3 to a bracket mounted DB37. Install the bracket assembly into an adjacent PC expansion slot and connect the free cable end to the board's J3 header. When connecting to J3, make sure that the cable pin 1 goes to J3 pin 1 (see the layout drawing "X64 Xcelera-LVDS PX4 Board Layout Drawing" on page 84).

**Note:** For additional independent I/O signals use the optional X-I/O module. See "Appendix: X-I/O Module Option" on page 113.

#### External Signals Connector Bracket Assembly (Type 1) Drawing



#### External Signals Connector Bracket Assembly (Type 1) Pinout

The following table defines the signal pinout on the DB37 connector. Refer to the table "J3: External Signals Connector " on page 101 for signal descriptions.

| DB37 Pin Number | Signal            | J3 Connector Pin<br>Number |
|-----------------|-------------------|----------------------------|
| 1               | Ground            | 1                          |
| 20              | Ground            | 2                          |
| 2               | General Input 0 + | 3                          |
| 21              | General Input 0 - | 4                          |

| 3  | General Input 1 + 5        |    |  |  |
|----|----------------------------|----|--|--|
| 22 | General Input 1 -          | 6  |  |  |
| 4  | General Input 2 +          | 7  |  |  |
| 23 | General Input 2 -          | 8  |  |  |
| 5  | General Input 3 +          | 9  |  |  |
| 24 | General Input 3 -          | 10 |  |  |
| 6  | General Output 0 +         | 11 |  |  |
| 25 | General Output 0 -         | 12 |  |  |
| 7  | General Output 1 +         | 13 |  |  |
| 26 | General Output 1 -         | 14 |  |  |
| 8  | General Output 2 +         | 15 |  |  |
| 27 | General Output 2 -         | 16 |  |  |
| 9  | General Output 3 +         | 17 |  |  |
| 28 | General Output 3 -         | 18 |  |  |
| 10 | External Trigger Input 0 + | 19 |  |  |
| 29 | External Trigger Input 0 - | 20 |  |  |
| 11 | External Trigger Input 1 + | 21 |  |  |
| 30 | External Trigger Input 1 - | 22 |  |  |
| 12 | Shaft Encoder Phase A +    | 23 |  |  |
| 31 | Shaft Encoder Phase A -    | 24 |  |  |
| 13 | Shaft Encoder Phase B +    | 25 |  |  |
| 32 | Shaft Encoder Phase B -26  |    |  |  |
| 14 | Ground                     | 27 |  |  |
| 33 | Strobe Output 0            | 28 |  |  |
| 15 | Ground                     | 29 |  |  |
| 34 | Strobe Output 1            | 30 |  |  |
| 16 | Ground                     | 31 |  |  |
| 35 | Ground                     | 32 |  |  |
| 17 | +5V                        | 33 |  |  |
| 36 | +5V                        | 34 |  |  |
| 18 | +12V 35                    |    |  |  |
| 37 | +12V                       | 36 |  |  |
| 19 | Ground                     | 37 |  |  |
| _  | _                          | 38 |  |  |
| _  | _                          | 39 |  |  |
|    | _                          | 40 |  |  |

# External Signals Connector Bracket Assembly (Type 2)

The External Signals bracket (OR-X4CC-0TIO2) provides a simple way to bring out the signals from the External Signals Connector J3 to a bracket mounted DB25. Connect external cables designed for the DALSA X64-CL iPro directly.

Install the bracket assembly into an adjacent PC expansion slot and connect the free cable end to the board's J3 header. When connecting to J3, make sure that the cable pin 1 goes to J3 pin 1 (see the layout drawing "X64 Xcelera-LVDS PX4 Board Layout Drawing" on page 84).

**Note:** For additional independent I/O signals use the optional X-I/O module. See "Appendix: X-I/O Module Option" on page 113.

# DB25 Female mounted bracket Flat cable 12" Connector is notched for one way insertion

#### External Signals Connector Bracket Assembly (Type 2) Drawing

#### External Signals Connector Bracket Assembly (Type 2) Pinout

The following table defines the signal pinout on the DB25 connector. Refer to the table "J3: External Signals Connector " on page 101 for signal descriptions.

| DB25 Pin Number | Signal                     | J3 Connector Pin<br>Number |
|-----------------|----------------------------|----------------------------|
| 6               | External Trigger Input 0 + | 19                         |
| 19              | External Trigger Input 0 - | 20                         |
| 7               | External Trigger Input 1 + | 21                         |
| 20              | External Trigger Input 1 - | 22                         |
| 8               | Shaft Encoder Phase A +    | 23                         |
| 21              | Shaft Encoder Phase A -    | 24                         |
| 9               | Shaft Encoder Phase B +    | 25                         |
| 22              | Shaft Encoder Phase B -    | 26                         |
|                 |                            |                            |
| 11              | Strobe Output 0            | 28                         |
| 24              | Ground                     | 29                         |
| 10              | Strobe Output 1            | 30                         |
| 14              | Ground                     | 31                         |
| 15              | Ground                     | 38                         |
| 16              | Ground                     | 39                         |
| 25              | Ground                     | 40                         |

# J14: Board Sync

Board Sync interconnects multiple X64 Xcelera boards to synchronize acquisitions to one trigger or event. The trigger source can be either an external signal or internal software trigger. The board receiving the trigger is the Master board, while the boards receiving the control signal from the Master board are Slaves.

- Hardware Connection: Interconnect two, three, or four X64 Xcelera boards via their J14 connector. The 4 pin cable is wired one to one — i.e. no crossed wires. The cable must be as short as possible and the boards must be in the same system.
- Master Board Software Setup: Choose one X64 Xcelera as master. The Sapera parameter CORACQ\_PRM\_EXT\_TRIGGER\_SOURCE is set to either *Mode 1–Output to Board Sync* or *Mode 2–Control pulse to Board Sync*. See Sapera documentation for more details.
- Slave Board Software Setup: The Sapera parameter CORACQ\_PRM\_EXT\_TRIGGER\_SOURCE is set to *From Board Sync*.
- **Test Setup:** The control application starts the acquisition on all slave boards. The acquisition process is now waiting for the control signal from the master board. The master board acquisition is triggered and the acquisition start signal is sent to each slave board (with ~0.8µs delay max).

Contact Technical Support for additional information.

# Appendix: X-I/O Module Option

# X-I/O Module Overview

- The X-I/O module requires X64 Xcelera-LVDS PX4 board driver version 1.00 (or later) and Sapera LT version 5.30 (or later).
- Occupies an adjacent slot to the X64 Xcelera-LVDS PX4 Full. Slot can be either PCI-32 or PCI-64—no PCI signals or power are used.
- Connects to the X64 Xcelera-LVDS PX4 via a 16 pin flat ribbon cable. J23 on X-I/O to J11 on X64 Xcelera-LVDS PX4.
- The X-I/O signals supplement the external signal I/O available on the main board. The two sets of I/O are independent of each other.
- X-I/O provides 8 outputs software selectable as NPN (current sink) or PNP (source driver) type drivers. See "Outputs in NPN Mode: Electrical Details" on page 117 and "Outputs in PNP Mode: Electrical Details" on page 118.
- X-I/O provides 2 opto-coupled inputs. See "Opto-coupled Input: Electrical Details" on page 119.
- X-I/O provides 6 TTL level inputs with software selectable transition point. See "TTL Input Electrical Details" on page 119.
- X-I/O provides both +5 volt and +12 volt power output pins on the DB37, where power comes directly from the host system power supply.
- Onboard flash memory to store user defined power up I/O states.

## X-I/O Module Connector List & Locations



| J20                | DB37 female external signals connector.                                                          |
|--------------------|--------------------------------------------------------------------------------------------------|
| J23                | 16 pin header connector<br>(interconnect to the X64 Xcelera-LVDS PX4 via supplied ribbon cable). |
| J21, J22, J24, J28 | Reserved.                                                                                        |
| J26                | Connect PC power via floppy drive power cable.                                                   |

# X-I/O Module Installation

**Grounding Instructions:** Static electricity can damage electronic components. Please discharge any static electrical charge by touching a grounded surface, such as the metal computer chassis, before performing any hardware installation. If you do not feel comfortable performing the installation, please consult a qualified computer technician. **Never** remove or install any hardware component with the computer power on.

# **Board Installation**

Installing an X-I/O Module to an existing X64 Xcelera-LVDS PX4 installation takes only a few minutes. Install the X-I/O board into the host system as follows:

- Power off the computer system that has the installed X64 Xcelera-LVDS PX4 board.
- Insert the X-I/O module into any free PCI slot (no PCI electrical connections are used), securing the bracket.
- Connect the supplied X-I/O module 16 pin ribbon cable from J23 to the X64 Xcelera-LVDS PX4 board J11.
- Power on the computer again.
- For new X64 Xcelera-LVDS PX4 and X-I/O module installations, simply follow the procedure to install Sapera and the X64 Xcelera-LVDS PX4 driver (start with "Installing X64 Xcelera-LVDS PX4" on page 11).

# X64 Xcelera-LVDS PX4 and X-I/O Driver Update

- If both Sapera and X64 Xcelera-LVDS PX4 driver need to be installed, follow the procedure "Sapera LT Library Installation" on page 11. This procedure steps through the upgrade of both Sapera and the board driver—typically required when installing the X-I/O module in the field.
- If the X64 Xcelera-LVDS PX4 installation already has the required Sapera and board driver version, install the X-I/O module and perform a firmware update as described in "Executing the Firmware Loader from the Start Menu" on page 14.

# X-I/O Module External Connections to the DB37

Users can assemble their interface cable, using some or all of the signals available on the X-I/O module DB37. Use a male DB37 with thumbscrews for a secure fit. Wiring type should meet the needs of the imaging environment.

For the external signals Trigger Input, Shaft Encoder Input, and Strobe output, now available on the DB37, refer "J3: External Signals Connector" on page 101 to for signal details.

| Pin #      | Signal     | Description                           |  |
|------------|------------|---------------------------------------|--|
| 1          | IN_OPTO_1+ | Input #1 ( Opto-coupled )             |  |
| 20         | IN_OPTO_1- |                                       |  |
| 2          | IN_OPTO_2+ | Input #2 ( Opto-coupled )             |  |
| 21         | IN_OPTO_2- |                                       |  |
| 3, 23, 24  | Gnd        |                                       |  |
| 22         | OUT_TTL_1  | output #1                             |  |
| 4          | OUT_TTL_2  | output #2                             |  |
| 5          | USER_PWR   | Power for the TTL Outputs in PNP mode |  |
| 6          | TrigIn 1+  | Trigger Input 1 +                     |  |
| 25         | TrigIn 1-  | Trigger Input 1 - (TTL trigger GND)   |  |
| 7          | TrigIn 2+  | Trigger Input 2 +                     |  |
| 26         | TrigIn 2-  | Trigger Input 2 - (TTL trigger GND)   |  |
| 8          | Phase A+   | Shaft Encoder Phase A+                |  |
| 27         | Phase A-   | Shaft Encoder Phase A-                |  |
| 9          | Phase B+   | Shaft Encoder Phase B+                |  |
| 28         | Phase B-   | Shaft Encoder Phase B-                |  |
| 10         | Strobe 2   | TTL Strobe 2 output                   |  |
| 11         | Strobe 1   | TTL Strobe 1 output                   |  |
| 16, 29, 30 | Gnd        |                                       |  |
| 12         | Power      | PC +5V (1A max)                       |  |
| 31         | Power      | PC +12V (1A max)                      |  |
| 13         | IN_TTL_3   | Input #3 (TTL)                        |  |
| 32         | IN_TTL_4   | Input #4 (TTL)                        |  |
| 14         | IN_TTL_5   | Input #5 (TTL)                        |  |
| 33         | IN_TTL_6   | Input #6 (TTL)                        |  |
| 15         | IN_TTL_7   | Input #7 (TTL)                        |  |
| 34         | IN_TTL_8   | Input #8 (TTL)                        |  |
| 35         | OUT_TTL_3  | output 3                              |  |
| 17         | OUT_TTL_4  | output 4                              |  |
| 36         | OUT_TTL_5  | output 5                              |  |
| 18         | OUT_TTL_6  | output 6                              |  |
| 37         | OUT_TTL_7  | output 7                              |  |
| 19         | OUT_TTL_8  | output 8                              |  |

# **DB37** Pinout Description

# **Outputs in NPN Mode: Electrical Details**

When the outputs are configured for NPN mode (open collector - sink mode) the user is required to provide an external input pull-up resistor on the signal being controlled by the X-I/O output. A simplified schematic and important output specification follow:



- Each output can sink 700 mA.
- Over-current thermal protection will automatically shut down the output device.

# **Outputs in PNP Mode: Electrical Details**

When the outputs are configured for PNP mode (source driver), an external power supply is required to provide the buffer output supply voltage (USER\_PWR). A simplified schematic and important output specification follow:



- User provides the output power supply voltage (7 volts to 35 volts).
- Maximum source driver output current is 350 mA.
- Source driver with over-current protection (all outputs will shut down simultaneously). The over-current fault circuit will protect the device from short-circuits to ground with supply voltages of up to 35V.

# **Opto-coupled Input: Electrical Details**

Use the two opto-coupled inputs with either TTL or RS422 sources. A simplified input schematic and important electrical specification follows.



# **Opto-Coupled Input**

## **TTL Input Electrical Details**

The six TTL inputs are software configurable (see "Configuring User Defined Power-up I/O States" on page 120) for standard TTL logic levels or industrial logic systems (typically 24 volts). The design switch points are as follows:

- TTL level mode : trip point at 2V +/- 5%
- Industrial level mode: trip point at 16V +/- 5%

# X-I/O Module Sapera Interface

Sapera version 5.30 (or later) provides support for the X-I/O module via an I/O class and demonstration program. Users can use the demonstration program as is, or use the demo program source code to implement X-I/O controls within the custom imaging application.

This section describes configuring the X-I/O module power up state, using the X-I/O demo program, and describes the Sapera Class to program and read the X-I/O module along with sample code.

## Configuring User Defined Power-up I/O States

The X-I/O module power up state is stored onboard in flash memory. Use the Device Manager program to configuration the initial state. Run the program via the windows start menu: (Start • Programs • DALSA • X64 Xcelera-LVDS PX4 Device Driver • Device Manager).

The Device Manager provides information on the installed X64 Xcelera-LVDS PX4 board and its firmware. With an X-I/O module installed, click on **XIO Board – Information**, as shown in the following figure.

| 📉 DALSA Co        | oreco Device | : Manager                         |                              |             |   |
|-------------------|--------------|-----------------------------------|------------------------------|-------------|---|
| <u>File H</u> elp |              |                                   |                              |             |   |
| Information /     | Firmware Man | ager                              |                              |             |   |
| Program           | Refresh      | Reset                             |                              |             |   |
| Device            |              |                                   | Information                  |             |   |
|                   |              |                                   | Field                        | Value       |   |
|                   |              |                                   | Device 0 NPN Pin             | 0x00FF      |   |
|                   |              |                                   | Device 0 PNP Pin             | 0x00FF      |   |
|                   |              |                                   | Device 0 Tristate Pin        | 0x00FF      |   |
| ⊡ ×IO E           | Board        |                                   | Device 0 Default Output Type | Tristate 🔽  |   |
| Information       |              | Device 0 Default Output Pin State | 0x000F                       |             |   |
| r                 |              |                                   | Device 1 Optocoupled Pin     | 0x0003      | _ |
|                   |              | Device 1 Input Pin                | 0x00FF                       |             |   |
|                   |              | Device 1 TTL 5 Volts Pin          | 0x00FF                       |             |   |
|                   |              |                                   | Device 1 TTL 24 Volts Pin    | 0x00FC      |   |
|                   |              |                                   | Device 1 Default Input Level | TTL 5 Volts |   |
|                   |              | Device 1 Default Connector        | DB37                         | -           |   |
| Information       | n / Firmware | Update Firmwa                     | re                           |             |   |
| Output            |              |                                   |                              |             | - |
|                   |              |                                   |                              |             |   |
|                   |              |                                   |                              |             |   |
|                   |              |                                   |                              |             |   |
|                   |              |                                   |                              |             |   |
|                   |              |                                   |                              |             |   |
|                   |              |                                   |                              |             |   |

The XIO information screen shows the status of **Device 0**—the output device, and **Device 1**—the input device. A few items are user configurable for X-I/O board power up state. Click on the item to display a drop list of available capabilities, as described below.

- Device 0 Default Output Type choose Tristate mode (i.e. output disconnected), or PNP mode, or NPN mode.
- Device 0 Default Output Pin State A window displays to select a logic low or high state for each output pin. Click on each pin that should be logic high by default.
- Device 1 Default Input Level Select the input logic level as TTL 5 Volts or 24 Volts, dependent on the signal type input to the X-I/O module.
- Device 1 Default Connector DB37 is the supported output connector, as described in this section.

#### Programming the User Configuration

After changing any user configurable X-I/O mode from the factory default state, click on the **Program** button (located on the upper left), to write the new default state to flash memory. The Device Manager Output message window will display "Successfully updated EEProm". The program can now be closed.

# Using Sapera LT General I/O Demo

The Sapera General I/O demo program controls the I/O capabilities of the X-I/O module on the Sapera board product. The demo will present to the user only the controls pertaining to the selected hardware (in the case of multiple installed boards).

Run the demo via the windows start menu: (Start • Programs • DALSA • Sapera LT • Demos • General I/O Demo). The first menu presents a drop list of all installed Sapera Acquisition Devices with I/O capabilities. Select the X64 Xcelera-LVDS PX4 board is selected and click OK to continue.

#### General I/O Module Control Panel

The I/O module control demo presents the I/O capabilities of the installed hardware. The following figure shows the X-I/O module connected to the X64 Xcelera-LVDS PX4 board.

Output Pins: The first column displays the current state of the eight output pins (I/O Device #0).

- The startup default state is user configured using the Device Manager program.
- The state of each output is changed by clicking on its status button.
- Use the Signal Output drop menu to select the output mode (Tristate, PNP, NPN).

**Input Pins**: The second section provides input pin status (I/O device #1). Note that this program is a demo, therefore no action takes place on an input event.

- The first column reads the logic level present on each input. The Input Level drop menu changes the logic level from 5V TTL to 24V logic. Use the Device Manager program to select the default logic level type.
- The second column demonstrates activating interrupts on individual inputs. In this demo program, use the Enable box to activate the interrupt on an input. The Count box will tally detected input events. Use the Signal Event drop menu to select which input signal edge to detect. The Reset button clears all event counts.

| 🎦 General I/            | 0 module |                          |              |                |       |
|-------------------------|----------|--------------------------|--------------|----------------|-------|
| General I/O #0 (output) |          | - General I/O #1 (input) |              |                |       |
| Outout                  | Status   | lumut                    | Chabus       | Enput Interrup | Count |
| 1                       |          | Input<br>1               | Status       | Enable         |       |
|                         | нин      |                          |              | I¥.            | lo lo |
| 2                       | HIGH     | 2                        | HIGH         |                | 0     |
| 3                       | HIGH     | 3                        | HIGH         |                | 0     |
| 4                       | HIGH     | 4                        | HIGH         |                | 0     |
| 5                       | LOW      | 5                        | HIGH         |                | 0     |
| 6                       | LOW      | 6                        | HIGH         |                | 0     |
| 7                       | LOW      | 7                        | HIGH         |                | 0     |
| 8                       | LOW      | 8                        | HIGH         |                | 0     |
| 9                       | N/A.     | 9                        |              |                |       |
| 10                      | NZA.     | 10                       |              |                |       |
| 11                      | N/A.     | 11                       |              |                |       |
| 12                      | N/A.     | 12                       |              |                |       |
| Signal Outp             | out      |                          |              |                | Reset |
| Tristate                | -        | Input Le                 | vel          | Signal Eve     | nt    |
| Power Sta               | itus 📕   | 5-Volts Si               | ngle Ended 💌 | Falling Edg    | •     |
|                         |          |                          |              |                |       |
|                         |          |                          | Exit         |                |       |

# Sapera LT General I/O Demo Code Samples

The following source code was extracted from the General I/O demo program. The comments highlight the areas that an application developer needs for embedding X-I/O module controls within the imaging application.

#### Main I/O Demo code

```
BOOL CGioMainDlg::OnInitDialog()
[...]
// some declarations
UINT32 m gioCount;
int m ServerIndex;
int m ResourceIndex;
// Show the Server Dialog to select the acquisition device
CGioServer dlg(this);
if (dlg.DoModal() == IDOK)
{
   m ServerIndex = dlg.GetServerIndex();
   m ServerName = dlg.GetServerName();
   if ( m ServerIndex != -1)
       // Get the number of resources from SapManager for ResourceGio type by using
       // - the server index chosen in the dialog box
       // - the resource type to enquire for Gio
       m gioCount=SapManager::GetResourceCount(m ServerIndex,SapManager::ResourceGio);
       // Create all objects [see the function following]
       if (!CreateObjects()) { EndDialog(TRUE); return FALSE; }
       [...]
       //Loop for all resources
       for (UINT32 iDevice = 0; (iDevice < MAX GIO DEVICE) && (iDevice < m gioCount);
                                 iDevice++)
       {
           [...]
           // direct read access to low-level Sapera C library capability to check
           // I/O Output module
           if (m pGio[iDevice]->IsCapabilityValid(CORGIO CAP DIR OUTPUT))
           status = m pGio[iDevice]->GetCapability(CORGIO CAP DIR OUTPUT,&capOutput);
           // direct read access to low-level Sapera C library capability to
           // check I/O Input module
           if (m pGio[iDevice]->IsCapabilityValid(CORGIO CAP DIR INPUT))
```

```
status = m_pGio[iDevice]->GetCapability(CORGIO_CAP_DIR_INPUT,&capInput);
[ . . . ]
    // Constructor used for I/O Output module dialog.
    if (capOutput)
    {
        m_pDlgOutput[iDevice] = new CGioOutputDlg(this, iDevice, m_pGio[iDevice]);
        }
        [ . . . ]
        // Constructor used for I/O Input module dialog.
        if (capInput)
        {
        m_pDlgInput[iDevice] = new CGioInputDlg(this, iDevice, m_pGio[iDevice]);
        }
        // end for
    } // end if
[ . . . ]
}
```

#### Function CreateObjects()

```
BOOL CreateObjects()
CWaitCursor wait;
// Loop for all I/O resources
for (UINT32 iDevice = 0; (iDevice < MAX GIO DEVICE) && (iDevice < m gioCount);
       iDevice++)
{
   // The SapLocation object specifying the server where the I/O resource is located
   SapLocation location(m ServerIndex, iDevice);
       // The SapGio constructor is called for each resource found.
       m pGio[iDevice] = new SapGio(location);
       // Creates all the low-level Sapera resources needed by the I/O object
       if (m pGio[iDevice] && !*m pGio[iDevice] && !m pGio[iDevice]->Create())
       {
           DestroyObjects();
           return FALSE;
       }
   }
return TRUE;
}
```

#### Output Dialog: CGioOutputDlg class (see Sapera Gui class)

```
void CGioOutputDlg::UpdateIO()
{
   UINT32 output=0;
   UINT32 state=0;
   BOOL status;
   [...]
   // We loop to get all I/O pins.
   for (UINT32 iIO=0; iIO < (UINT32)m pGio->GetNumPins(); iIO++)
   {
       [...]
       // We set the current state of the current I/O pin by using
       // - the pin number on the current I/O resource
       // - the pointer to pin state
       // ( SapGio :: PinLow if low and SapGio :: PinHigh if high)
       status = m pGio->SetPinState(iIO, (SapGio::PinState)state);
   }
```

#### Input Dialog: CGioInputDlg class. (see Sapera Gui class)

```
BOOL CGioInputDlg::Update()
{
   SapGio::PinState state = SapGio::PinState::PinLow;
   BOOL status = true;
   UINT32 iIO;
   UINT32 jIO;
   if (m pGio == NULL)
       return FALSE;
   // We loop to get all I/O pins.
   for (iIO=0; iIO < (UINT32)m pGio->GetNumPins(); iIO++)
   {
       m pGio->SetDisplayStatusMode(SapManager::StatusLog, NULL);
       // We get the current state of the current I/O pin by using
       // the pin number on the current I/O resource
       // the pointer to pin state
       // ( SapGio ::PinLow if low and SapGio ::PinHigh if high)
       status = m pGio->GetPinState(iIO, &state);
       m pGio->SetDisplayStatusMode(SapManager::StatusNotify, NULL);
       [...]
   }
   [...]
}
```

#### I/O Event Handling



# **Contact Information**

# **Sales Information**

Visit our web site:

Email:

#### Canada

Teledyne DALSA — Montreal office 7075 Place Robert-Joncas, Suite #142 St. Laurent, Quebec, Canada H4M 2Z2

Tel: (514) 333-1301 Fax: (514) 333-1388

#### Asia Sales

Teledyne DALSA Asia Pacific Ikebukuro East 13F 3-4-3 Higashi Ikebukuro, Toshima-ku, Tokyo Japan Tel: +81 3 5960 6353 Fax: +81 3 5960 6354

#### www.teledynedalsa.com/mv

mailto:info@teledynedalsa.com

#### **USA Sales**

Teledyne DALSA — Billerica office 700 Technology Park Drive Billerica, Ma. 01821 Tel: (978) 670-2000 Fax: (978) 670-2010

#### **European Sales**

Teledyne DALSA Europe Breslauer Str. 34 D-82194 Gröbenzell (Munich) Germany

Tel: +49 - 8142 - 46770 Fax: +49 - 8142 - 467746

# **Technical Support**

#### Submit any support question or request via our web site:

| Technical support form via our web page:            |
|-----------------------------------------------------|
| Support requests for imaging product installations, |
| Support requests for imaging applications           |

http://www.teledynedalsa.com/mv/support

Camera support information

Product literature and driver updates

# **Glossary of Terms**

#### Bandwidth

Describes the measure of data transfer capacity. PCI devices must share the maximum PCI bus bandwidth when transferring data to and from system memory or other devices.

#### CAM

Sapera camera file that uses the file extension CCA by default. Files using the CCA extension, also called CAM files (CAMERA files), contain all parameters which describe the camera video signal characteristics and operation modes (i.e. what the camera outputs).

#### Channel

Camera data path that includes all parts of a video line.

#### Checksum

A value used to ensure data is stored without error. It is created by calculating the binary values in a block of data using some algorithm and storing the results with the data.

#### CMI

Client Modification Instruction. A client requested engineering change applied to a DALSA board product to support either a non-standard function or custom camera.

#### **Contiguous memory**

A block of physical memory, occupying consecutive addresses.

#### CRC

Proprietary Sapera raw image data file format that supports any Sapera buffer type and utilizes an informative file header. Refer to the *Sapera Basic Modules Reference Manual* "Buffer File Formats" section.

#### Firmware

Software such as a board driver that is stored in nonvolatile memory mounted on that board.

#### FPN (Fixed Pattern Noise):

FPN is the unwanted static variations in response for all pixels in the image.

#### Frame buffer

An area of memory used to hold a frame of image data. A frame buffer may exist on the acquisition hardware or be allocated by the acquisition hardware device driver in host system memory.

#### Grab

Acquiring an image frame by means of a frame grabber.

#### Host

Refers to the computer system that supports the installed frame grabber.

#### Host buffer

Refers to a frame buffer allocated in the physical memory of the host computer system.

#### LSB

Least Significant Bit in a binary data word.

#### MSB

Most Significant Bit in a binary data word.

#### PCI 32

Peripheral Component Interconnect. The PCI local bus is a 32-bit high-performance expansion bus intended for interconnecting add-in boards, controllers, and processor/memory systems.

#### **PCI 64**

A superset of the PCI specification providing a 64 bit data path and a 66 MHz clock.

#### PCI Express

PCI Express is the serial bus addition to the PCI series of specifications. However PCI Express is not compatible with PCI products or expansion slots. PCI Express products or expansion slots are designated as 1x, 4x, 8x, or 16x, which defines the total data bandwidth and the physical size of the bus connector.

#### Pixel

Picture Element. The number of pixels describes the number of digital samples taken of the analog video signal. The number of pixels per video line by the number of active video lines describes the acquisition image resolution. The binary size of each pixel (i.e., 8-bits, 15-bits, 24-bits) defines the number of gray levels or colors possible for each pixel.

#### PRNU (Photo Response Non Uniformity):

PRNU is the variation in response between sensor pixels.

#### RAW

A Sapera data file format where there is no header information and that supports any Sapera buffer type. Refer to the *Sapera Basic Modules Reference Manual* "Buffer File Formats" section.

#### RISC

(Reduced Instruction Set Computer) A computer architecture that reduces chip complexity by using simpler instructions.

#### Scatter Gather

Host system memory allocated for frame buffers that is virtually contiguous but physically scattered throughout all available memory.

#### Тар

Data path from a camera that includes a part of or whole video line. When a camera tap outputs a partial video line, the multiple camera tap data must be constructed by combining the data in the correct order.

#### VIC

Sapera camera parameter definition file that uses the file extension CVI by default. Files using the CVI extension, also know as VIC files, contain all operating parameters related to the frame grabber board (i.e. what the frame grabber can actually do with camera controls or incoming video).

# Index

#### A

acquisition bandwidth 43 Acquisition events 66 acquisition module 66 acquisition parameters 55 administrator 11, 15 AUTORUN 11

#### B

Block Diagram 59 BoardInfo.txt 19, 40 boot recovery mode 40 buffer output supply voltage 118

#### С

cable diagrams 20 calibration information 41 camera configuration file 45 camera connections 21 Camera file 42, 50, 56, 63, 65 camera power 20 camera serial port control 16 camera timing 45 CamExpert 56, 63, 65 CamExpert parameters 47 connector location 114 Contiguous Memory 33 CORACQ PRM EXT LINE TRIGGER DETECTIO N 105 CORACQ PRM EXT LINE TRIGGER ENABLE 105 CORACQ PRM EXT LINE TRIGGER LEVEL 105 CORACQ PRM EXT LINE TRIGGER SOURCE 105 CORACQ PRM EXT TRIGGER DETECTION 103 CORACQ PRM EXT TRIGGER ENABLE 103 CORACQ PRM EXT TRIGGER LEVEL 103 CORACO PRM SHAFT ENCODER DROP 105 CORACQ PRM SHAFT ENCODER ENABLE 105 CORACQ PRM SHAFT ENCODER LEVEL 105 CORACQ PRM STROBE DELAY 106

X64 Xcelera-LVDS PX4 User's Manual

CORACQ\_PRM\_STROBE\_DURATION 106 CORACQ\_PRM\_STROBE\_ENABLE 106 CORACQ\_PRM\_STROBE\_LEVEL 106 CORACQ\_PRM\_STROBE\_METHOD 106 CORACQ\_PRM\_STROBE\_POLARITY 106

#### D

Data Overflow event 66 Data Transfer Engine 7 Device Manager 13, 19, 40, 120 device report 19 double buffering memory 41 driver upgrade 15

#### E

End of Frame event 67 End of Transfer event 67 External Signals Connector 62, 63, 64, 101, 107, 109 External Signals Connector Bracket Assembly 63, 107, 109

#### F

failure - firmware upgrade 39 Firmware Loader 13 firmware revision 19 firmware selection 8 Flat Field Correction 50 Found New Hardware Wizard 12 frame buffer 33, 64 Frame Lost event 67 Frame Sync 65 FRAME RESET 64

#### H

HyperTerminal 16

### I

I/O available capabilities 120 I/O Device 0 120 I/O Device 1 120 I/O flash memory 120 I/O input event 122 I/O input trip points 119 I/O interface cable 115 I/O interrupts 122 I/O NPN output mode 121 I/O output modes 113 I/O PNP output mode 121 I/O power up state 120 I/O sample code 120 I/O source code 123 I/O Tristate output mode 121 image processing 5 Imaging drivers 39 Industrial level mode 119 input logic level 121 input pin status 122 input pull-up resistor 117

#### L

launch.exe 11 Line Scan 63 Log Viewer program 41 LUT availability 68

#### Μ

Maximum common mode voltage 88, 96 Maximum Input Current 88, 96 memory error 48, 78 minimum differential threshold 88, 96 multi-board sync 111

#### N

NPN mode 117

#### 0

onboard memory 48, 78 opto-coupled input specs 119 out-of-memory error 33 output sink current 117 output source current 118

#### Р

PCI Bus Number 37 PCI configuration registers 37 PCI configuration space 37, 40, 43 PCI conflict 40 Phase A 63 Phase B 63 physical dimensions 82 PNP mode 118 programming I/O flash 121

### Q

Quadrature-Shaft-Encoder 9

### R

RS-644 88, 96

### S

Sapera Acquisition Devices 121 Sapera buffers allocation 33 Sapera CamExpert 42 Sapera CD-ROM 11, 15 Sapera configuration program 16, 17, 33 Sapera LT Development Library 11 Sapera LT User's manual 11 Sapera messaging 33 scatter gather buffers 34 Scatter-Gather 7 serial communication port 16 shaft encoder 9, 63 software trigger 42, 104 source/destination pairs 79 Static electricity 11, 114 Status LEDs 20, 87 system COM port 16

### Т

technical support 15, 19, 39, 42 transfer module 67 trigger 9, 63, 64

#### U

user defined I/O state 113 USER\_PWR 118

#### V

viewer program 41 virtual frame buffer 64 visual LED indicators 9

#### W

Web inspection 63 Windows HyperTerminal 16 Windows operating system memory 34 workstation 11, 15

### Х

X-I/O field installation 115 X-I/O module driver update 115 X-I/O module overview 113